61 XgTEX PART 1: INTRODUCTION 3

March 14, 2024 at 19:03

2¥ The present implementation has a long ancestry, beginning in the summer of 1977, when Michael F.
Plass and Frank M. Liang designed and coded a prototype based on some specifications that the author had
made in May of that year. This original protoTEX included macro definitions and elementary manipulations
on boxes and glue, but it did not have line-breaking, page-breaking, mathematical formulas, alignment
routines, error recovery, or the present semantic nest; furthermore, it used character lists instead of token
lists, so that a control sequence like \halign was represented by a list of seven characters. A complete version
of TEX was designed and coded by the author in late 1977 and early 1978; that program, like its prototype,
was written in the SAIL language, for which an excellent debugging system was available. Preliminary plans
to convert the SAIL code into a form somewhat like the present “web” were developed by Luis Trabb Pardo
and the author at the beginning of 1979, and a complete implementation was created by Ignacio A. Zabala
in 1979 and 1980. The TEX82 program, which was written by the author during the latter part of 1981
and the early part of 1982, also incorporates ideas from the 1979 implementation of TEX in MESA that
was written by Leonidas Guibas, Robert Sedgewick, and Douglas Wyatt at the Xerox Palo Alto Research
Center. Several hundred refinements were introduced into TEX82 based on the experiences gained with the
original implementations, so that essentially every part of the system has been substantially improved. After
the appearance of “Version 0” in September 1982, this program benefited greatly from the comments of
many other people, notably David R. Fuchs and Howard W. Trickey. A final revision in September 1989
extended the input character set to eight-bit codes and introduced the ability to hyphenate words from
different languages, based on some ideas of Michael J. Ferguson.

No doubt there still is plenty of room for improvement, but the author is firmly committed to keeping
TEX82 “frozen” from now on; stability and reliability are to be its main virtues.

On the other hand, the WEB description can be extended without changing the core of TEX82 itself, and
the program has been designed so that such extensions are not extremely difficult to make. The banner
string defined here should be changed whenever TEX undergoes any modifications, so that it will be clear
which version of TEX might be the guilty party when a problem arises.

This program contains code for various features extending TEX, therefore this program is called ‘XHTEX’
and not ‘TEX’; the official name ‘TEX’ by itself is reserved for software systems that are fully compatible
with each other. A special test suite called the “TRIP test” is available for helping to determine whether
a particular implementation deserves to be known as ‘TEX’ [cf. Stanford Computer Science report CS1027,
November 1984].

MLTEX will add new primitives changing the behaviour of TEX. The banner string has to be changed.
We do not change the banner string, but will output an additional line to make clear that this is a modified
TEX version.

A similar test suite called the “e-TRIP test” is available for helping to determine whether a particular
implementation deserves to be known as ‘e-TEX’.

define eTeX version =2 { \eTeXversion }

define eTeX revision =".6" { \eTeXrevision }

define eTeX version_string = -2.6° { current e-TEX version }
define XeTeX version =0 { \XeTeXversion }

define XeTeX revision = ".999996" { \XeTeXrevision }

define XeTeX version_string = “-0.999996 " { current X{IEX version }

define XeTeX_banner = “This_is XeTeX, Version ,3.141592653°, eTeX version_string,
XeTeX version_string { printed when XHTEX starts }

define TeX banner_k = “Thisis TeXk, Version,3.141592653 {printed when TEX starts }
define TeX banner = “This_ is TeX, Version 3.141592653° { printed when TEX starts }

define banner = XeTeX_banner
define banner_k = XeTeX_banner

define TEX = XETEX {change program name into XETEX }
define TeXXeT_code =0 {the TEX--XET feature is optional }

4 PART 1: INTRODUCTION XATEX §2

define XeTeX_dash_break_code =1 {non-zero to enable breaks after en- and em-dashes }

define XeTeX upwards_code =2 {non-zero if the main vertical list is being built upwards }
define XeTeX use_glyph-metrics_.code =3 {non-zero to use exact glyph height/depth }
define XeTeX_ inter_char_tokens_code =4 {non-zero to enable \XeTeXinterchartokens insertion }

define XeTeX_input_normalization_code =5 {normalization mode:, 1 for NFC, 2 for NFD, else none }

define XeTeX_default_input_mode_code = 6 {input mode for newly opened files }
define XeTeX _input-mode_auto =0

define XeTeX_input-mode_utf§ =1

define XeTeX_input_mode_utfi6be = 2

define XeTeX input_mode_utf16le = 3

define XeTeX input_mode_raw = 4

define XeTeX_input-mode_icu-mapping = 5

define XeTeX_default_input_encoding_code =7 { str_number of encoding name if mode = ICU }

define XeTeX tracing_fonts_code =8 {mnon-zero to log native fonts used }

define XeTeX_interword_space_shaping-code =9 { controls shaping of space chars in context when
using native fonts; set to 1 for contextual adjustment of space width only, and 2 for full
cross-space shaping (e.g. multi-word ligatures) }

define XeTeX_generate_actual_text_code =10 { controls output of /ActualText for native-word nodes }

define XeTeX_hyphenatable_length_code =11 { sets maximum hyphenatable word length }

define eTeX states = 12 {number of e-TEX state variables in eqtb }

4% The program begins with a normal Pascal program heading, whose components will be filled in later,
using the conventions of WEB. For example, the portion of the program called ‘(Global variables 13)’ below
will be replaced by a sequence of variable declarations that starts in §13 of this documentation. In this way,
we are able to define each individual global variable when we are prepared to understand what it means; we
do not have to define all of the globals at once. Cross references in §13, where it says “See also sections 20,
26, ...,” also make it possible to look at the set of all global variables, if desired. Similar remarks apply to
the other portions of the program heading.

define mitype = tQ&yQ@&p@%e { this is a WEB coding trick: }
format mtype = type {‘mtype’ will be equivalent to ‘type’}
format type = true {but ‘type’ will not be treated as a reserved word }

(Compiler directives 9)
program TEX; {all file names are defined dynamically }
const (Constants in the outer block 11*)
mtype (Types in the outer block 18)
var (Global variables 13)
procedure initialize; {this procedure gets things started properly }
var (Local variables for initialization 19*)
begin (Initialize whatever TEX might access 8*)
end;
(Basic printing procedures 57)
(Error handling procedures 82)

6* For Web2c, labels are not declared in the main program, but we still have to declare the symbolic names.

define start_.of TEX =1 {go here when TEX’s variables are initialized }
define final_end = 9999 { this label marks the ending of the program }

87 XgTEX PART 1: INTRODUCTION 5

7¥ Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes
occurs when TEX is being installed or when system wizards are fooling around with TEX without quite
knowing what they are doing. Such code will not normally be compiled; it is delimited by the codewords
‘debug ... gubed’, with apologies to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by ‘stat ... tats’ that is intended for use when statistics
are to be kept about TEX’s memory usage. The stat ... tats code also implements diagnostic information
for \tracingparagraphs, \tracingpages, and \tracingrestores.

define debug = ifdef ("TEXMF_DEBUG ")
define gubed = endif ("TEXMF_DEBUG ")
format debug = begin

format gubed = end

define stat = ifdef ("STAT")
define tats = endif ("STAT")
format stat = begin
format tats = end

8% This program has two important variations: (1) There is a long and slow version called INITEX, which
does the extra calculations needed to initialize TEX’s internal tables; and (2) there is a shorter and faster
production version, which cuts the initialization to a bare minimum. Parts of the program that are needed
in (1) but not in (2) are delimited by the codewords ‘init ...tini" for declarations and by the codewords
‘Init ... Tini’ for executable code. This distinction is helpful for implementations where a run-time switch
differentiates between the two versions of the program.
define init = ifdef ("INITEX ")
define tini = endif ("INITEX")
define Init =
init
if ini_version then
begin
define Tini =
end ; tini
format Init = begin
format Tini = end
format init = begin
format tini = end
(Initialize whatever TEX might access 8*) =

(Set initial values of key variables 23*)
Init (Initialize table entries (done by INITEX only) 189) Tini

See also section 1711%*.

This code is used in section 4%*.

6 PART 1: INTRODUCTION XHTEX 611

11* The following parameters can be changed at compile time to extend or reduce TEX’s capacity. They
may have different values in INITEX and in production versions of TEX.

define file_name_size = maxint

define ssup_error_line = 255

define ssup_maz_strings = 2097151
{ Larger values than 65536 cause the arrays to consume much more memory. }

define ssup_trie_opcode = 65535

define ssup_trie_size = "3FFFFF

define ssup_hyph_size = 65535 { Changing this requires changing (un)dumping! }

define iinf -hyphen_size = 610 { Must be not less than hyph_prime! }

define maz_font_mazr = 9000 {maximum number of internal fonts; this can be increased, but
hash_size + maz_font_maz should not exceed 29000. }

define font_base =0 {smallest internal font number; must be > min_quarterword; do not change this
without modifying the dynamic definition of the font arrays. }

(Constants in the outer block 11*) =
hash_offset = 514; {smallest index in hash array, i.e., hash_base }
{ Use hash_offset = 0 for compilers which cannot decrement pointers. }
trie_op_size = 35111;

{ space for “opcodes” in the hyphenation patterns; best if relatively prime to 313, 361, and 1009. }
neg_trie_op_size = —35111; { for lower trie_op_hash array bound; must be equal to —trie_op_size. }
min_trie_.op = 0; {first possible trie op code for any language }
maz_trie_op = ssup_trie_opcode; {largest possible trie opcode for any language }
pool_name = TEXMF_POOL_NAME; {this is configurable, for the sake of ML-TEX }

{ string of length file_name_size; tells where the string pool appears }
engine_name = TEXMF_ENGINE_NAME; {the name of this engine }

inf-mem_bot = 0; sup_mem_bot = 1; inf main_memory = 3000; sup_main_memory = 256000000;
inf_trie_size = 8000; sup_trie_size = ssup_trie_size; inf-max_strings = 3000;

sup_mazx_strings = ssup-mazx_strings; inf-strings_free = 100; sup_strings_free = sup-maz_strings;
inf-buf_size = 500; sup_buf_size = 30000000; inf-nest_size = 40; sup_nest_size = 4000;
inf-maz_in_open = 6; sup_maz_in_open = 127; inf_-param_size = 60; sup_param_size = 32767;
inf_save_size = 600; sup_save_size = 30000000; inf stack_size = 200; sup_stack_size = 30000;
inf_dvi_buf_size = 800; sup_dvi_buf size = 65536; inf_font_mem_size = 20000;

sup_font_mem_size = 147483647; { integer-limited, so 2 could be prepended? }

sup_font-maz = maz_font_maz; inf-font-max = 50; {could be smaller, but why? }

infpool_size = 32000; sup_pool_size = 40000000; inf_pool_free = 1000; sup_pool_free = sup_pool_size;
inf_string_vacancies = 8000; sup_string_vacancies = sup_pool_size — 23000;

sup_hash_extra = sup_mazx_strings; inf -hash_extra = 0; sup_hyph_size = ssup_hyph_size;
inf_hyph_size = iinf_hyphen_size; {Must be not less than hyph_prime! }

inf-expand_depth = 10; sup_expand_depth = 10000000;

This code is used in section 4%*.

612 XyIpX PART 1: INTRODUCTION

12¥ Like the preceding parameters, the following quantities can be changed at compile time to extend or
reduce TEX’s capacity. But if they are changed, it is necessary to rerun the initialization program INITEX
to generate new tables for the production TEX program. One can’t simply make helter-skelter changes to
the following constants, since certain rather complex initialization numbers are computed from them. They
are defined here using WEB macros, instead of being put into Pascal’s const list, in order to emphasize this

distinction.

define

define
define

define

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

define
define
define

hash_size = 15000 { maximum number of control sequences; it should be at most about
(mem_max — mem_min)/10; see also font-maz }

hash_prime = 8501 { a prime number equal to about 85% of hash_size }

hyph_prime = 607 {another prime for hashing \hyphenation exceptions; if you change this,
you should also change iinf_hyphen_size.}

biggest_char = 65535 { the largest allowed character number; must be < maz_quarterword, this

refers to UTF16 codepoints that we store in strings, etc; actual character codes can exceed
this range, up to biggest_usv }
too_big_char = 65536 { biggest_char + 1}
biggest_usv = "10FFFF { the largest Unicode Scalar Value }
too_big_usv = "110000 { biggest_usv + 1}
number_usvs = “110000 { biggest_usv + 1}
special_char = "110001 { biggest_usv + 2}
biggest_reg = 255 { the largest allowed register number; must be < maz_quarterword }
number_regs = 256 { biggest_reg + 1}
font_biggest = 255 { the real biggest font }
number_fonts = font_biggest — font_base + 2
number_math_families = 256
number_math_fonts = number_math_families + number_math_families + number_math_families
math_font_biggest = number_math_fonts — 1
text_size = 0 {size code for the largest size in a family }
script_size = number_math_families {size code for the medium size in a family }
script_script_size = number_math_families + number_math_families
{ size code for the smallest size in a family }
biggest_lang = 255 { the largest hyphenation language }
too_big_lang = 256 { biggest_lang + 1}
hyphenatable_length_limit = 4095
{ hard limit for hyphenatable length; runtime value is maz_hyphenatable_length }

16* Here are some macros for common programming idioms.

define
define

negate (#) = # < —# { change the sign of a variable }
loop = while true do {repeat over and over until a goto happens }

format loop = zclause {WEB’s xclause acts like ‘while true do’}

define
define

do_nothing = { empty statement }
return = goto erit {terminate a procedure call }

format return = nil

define

empty =0 {symbolic name for a null constant }

8 PART 2: THE CHARACTER SET XHTEX 817

19¥ The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and
small letters in a convenient way, especially in a program for typesetting; so the present specification of TEX
has been written under the assumption that the Pascal compiler and run-time system permit the use of text
files with more than 64 distinguishable characters. More precisely, we assume that the character set contains
at least the letters and symbols associated with ASCII codes 40 through “176; all of these characters are
now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name tezt_char to stand for the data type of
the characters that are converted to and from ASCII_code when they are input and output. We shall also
assume that text_char consists of the elements chr(first_text_char) through chr(last_text_char), inclusive.
The following definitions should be adjusted if necessary.

define text_char = ASCII_code {the data type of characters in text files }
define first_text_char =0 {ordinal number of the smallest element of text_char }
define last_text_char = biggest_char {ordinal number of the largest element of text_char }

(Local variables for initialization 19*) =
i: integer;
See also sections 188 and 981.

This code is used in section 4%*.

20¥ The TEX processor converts between ASCII code and the user’s external character set by means of
arrays zord and zchr that are analogous to Pascal’s ord and chr functions.

(Global variables 13) +=
xchr: Ttext_char; {dummy variable so tangle doesn’t complain; not actually used }

23¥* The ASCII code is “standard” only to a certain extent, since many computer installations have found it
advantageous to have ready access to more than 94 printing characters. Appendix C of The TEXbook gives a
complete specification of the intended correspondence between characters and TEX’s internal representation.

If TEX is being used on a garden-variety Pascal for which only standard ASCII codes will appear in the
input and output files, it doesn’t really matter what codes are specified in zchr[0 .. “37], but the safest
policy is to blank everything out by using the code shown below.

However, other settings of zchr will make TEX more friendly on computers that have an extended character
set, so that users can type things like ‘#” instead of ‘\ne’. People with extended character sets can assign
codes arbitrarily, giving an zchr equivalent to whatever characters the users of TEX are allowed to have
in their input files. It is best to make the codes correspond to the intended interpretations as shown in
Appendix C whenever possible; but this is not necessary. For example, in countries with an alphabet of
more than 26 letters, it is usually best to map the additional letters into codes less than /0. To get the
most “permissive” character set, change “|,” on the right of these assignment statements to chr(4).

(Set initial values of key variables 23*) =

See also sections 24*%, 62, 78%, 81, 84, 101, 122, 191, 241*, 280, 284*, 302, 317, 398, 417, 473, 516, 525, 586*, 591, 629, 632, 642,
687, 696, 704, 727, 819, 941, 982%, 1044, 1087, 1321, 1336, 1355, 1398, 1413, 1517, 1563, 1629, 1648, 1672, 1680*, 1689*,
and 1693*.

This code is used in section 8*.

24¥ The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xzchr. Note that if zchr[i] = xchr[j] where i < j < “177, the value of zord [zchr[i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 40 in case there
is a coincidence.

(Set initial values of key variables 23*) +=

625 XuIEX PART 3: INPUT AND OUTPUT 9

26* Most of what we need to do with respect to input and output can be handled by the I/0O facilities
that are standard in Pascal, i.e., the routines called get, put, eof , and so on. But standard Pascal does not
allow file variables to be associated with file names that are determined at run time, so it cannot be used
to implement TEX; some sort of extension to Pascal’s ordinary reset and rewrite is crucial for our purposes.
We shall assume that name_of_file is a variable of an appropriate type such that the Pascal run-time system
being used to implement TEX can open a file whose external name is specified by name_of-file.

{ Global variables 13) +=
name_of_file: TUTF8_code; {we build filenames in utf8 to pass to the OS }
name_of_file16: T1UTF16_code; {but sometimes we need a UTF16 version of the name }
name_length: 0 .. file_name_size;

{ this many characters are actually relevant in name_of_file (the rest are blank) }
name_length16: 0 .. file_name_size;

27% All of the file opening functions are defined in C.
28*% And all the file closing routines as well.

30* Input from text files is read one line at a time, using a routine called input_In. This function is defined
in terms of global variables called buffer, first, and last that will be described in detail later; for now, it
suffices for us to know that buffer is an array of ASCII code values, and that first and last are indices into
this array representing the beginning and ending of a line of text.

{ Global variables 13) +=

buffer: 1UnicodeScalar; {lines of characters being read }
first: 0 .. buf_size; {the first unused position in buffer }
last: 0 .. buf_size; {end of the line just input to buffer }
maz_buf_stack: 0 .. buf_size; {largest index used in buffer }

10 PART 3: INPUT AND OUTPUT XHTEX 631

31¥ The input_In function brings the next line of input from the specified file into available positions of
the buffer array and returns the value true, unless the file has already been entirely read, in which case it
returns false and sets last < first. In general, the ASCII_code numbers that represent the next line of the
file are input into buffer [first], buffer[first + 1], ..., buffer[last — 1]; and the global variable last is set equal
to first plus the length of the line. Trailing blanks are removed from the line; thus, either last = first (in
which case the line was entirely blank) or buffer[last — 1] # "".

An overflow error is given, however, if the normal actions of input_ln would make last > buf_size; this is
done so that other parts of TEX can safely look at the contents of buffer[last + 1] without overstepping the
bounds of the buffer array. Upon entry to input_in, the condition first < buf_size will always hold, so that
there is always room for an “empty” line.

The variable maz_buf_stack, which is used to keep track of how large the buf size parameter must be to
accommodate the present job, is also kept up to date by input_in.

If the bypass_eoln parameter is true, input_In will do a get before looking at the first character of the line;
this skips over an eoln that was in f1. The procedure does not do a get when it reaches the end of the line;
therefore it can be used to acquire input from the user’s terminal as well as from ordinary text files.

Standard Pascal says that a file should have eoln immediately before eof, but TEX needs only a weaker
restriction: If eof occurs in the middle of a line, the system function eoln should return a true result (even
though f1 will be undefined).

Since the inner loop of input_ln is part of TEX’s “inner loop”—each character of input comes in at this
place—it is wise to reduce system overhead by making use of special routines that read in an entire array of
characters at once, if such routines are available. The following code uses standard Pascal to illustrate what
needs to be done, but finer tuning is often possible at well-developed Pascal sites.

We define inpui_in in C, for efficiency. Nevertheless we quote the module ‘Report overflow of the input
buffer, and abort’ here in order to make WEAVE happy, since part of that module is needed by e-TeX.

@{(Report overflow of the input buffer, and abort 35*)@}

632 XyIpX PART 3: INPUT AND OUTPUT 11

32¥ The user’s terminal acts essentially like other files of text, except that it is used both for input and
for output. When the terminal is considered an input file, the file variable is called term_in, and when it is
considered an output file the file variable is term_out.

define term_out = stdout {the terminal as an output file }

(Global variables 13) +=

init ini_version: boolean; {are we INITEX? }
dump_option: boolean; {was the dump name option used? }
dump_line: boolean; {was a %&format line seen? }

tini
dump_name: const_cstring; {format name for terminal display }
term_in: unicode_file;

bound_default: integer; {temporary for setup }
bound_name: const_cstring; {temporary for setup }

mem_bot: integer;
{'smallest index in the mem array dumped by INITEX; must not be less than mem_min }

main_memory: integer; {total memory words allocated in initex }

extra_mem_bot: integer; { mem_min < mem_bot — extra_mem_bot except in INITEX }

mem_man: integer; {smallest index in TEX’s internal mem array; must be min_halfword or more; must
be equal to mem_bot in INITEX, otherwise < mem_bot }

mem_top: integer; {largest index in the mem array dumped by INITEX; must be substantially larger
than mem_bot, equal to mem_maz in INITEX, else not greater than mem_maz }

extra_mem_top: integer; {mem_mazx < mem_top + extra_mem_top except in INITEX }

mem_max: integer; {greatest index in TEX’s internal mem array; must be strictly less than maz_halfword;
must be equal to mem_top in INITEX, otherwise > mem_top }

error_line: integer; { width of context lines on terminal error messages }

half-error_line: integer; {width of first lines of contexts in terminal error messages; should be between 30
and error_line — 15 }

maz_print_line: integer; { width of longest text lines output; should be at least 60 }

maz_strings: integer; {maximum number of strings; must not exceed maz_halfword }

strings_free: integer; {strings available after format loaded }

string_vacancies: integer; {the minimum number of characters that should be available for the user’s
control sequences and font names, after TEX’s own error messages are stored }

pool_size: integer; {maximum number of characters in strings, including all error messages and help texts,
and the names of all fonts and control sequences; must exceed string_vacancies by the total length of
TEX’s own strings, which is currently about 23000 }

pool_free: integer; {pool space free after format loaded }

font_mem_size: integer; {number of words of font_info for all fonts }

font-maz: integer; {maximum internal font number; ok to exceed max_quarterword and must be at most
font_base+maz_font_-maz }

font_k: integer; {loop variable for initialization }

hyph_size: integer; {maximum number of hyphen exceptions }

trie_size: integer; {space for hyphenation patterns; should be larger for INITEX than it is in production
versions of TEX. 50000 is needed for English, German, and Portuguese. }

buf_size: integer; {maximum number of characters simultaneously present in current lines of open files
and in control sequences between \csname and \endcsname; must not exceed maz_halfword }

stack_size: integer; {maximum number of simultaneous input sources }

maz-_in_open: integer;
{ maximum number of input files and error insertions that can be going on simultaneously }

param_size: integer; {maximum number of simultaneous macro parameters }

nest_size: integer; { maximum number of semantic levels simultaneously active }

save_size: integer; {space for saving values outside of current group; must be at most maz_halfword }

12 PART 3: INPUT AND OUTPUT XHTEX 632

dvi_buf_size: integer; {size of the output buffer; must be a multiple of 8 }
expand_depth: integer; {limits recursive calls to the expand procedure }
parse_first_line_p: cinttype; {parse the first line for options }
file_line_error_style_p: cinttype; {format messages as file:line:error }
eight_bit_p: cinttype; { make all characters printable by default }
halt_on_error_p: cinttype; {stop at first error }
halting_on_error_p: boolean; {already trying to halt? }
quoted_filename: boolean; { current filename is quoted }

{ Variables for source specials }
src_specials_p: boolean; { Whether src_specials are enabled at all }
insert_src_special_auto: boolean;
insert_src_special_every_par: boolean;
insert_src_special_every_parend: boolean;
insert_src_special_every_cr: boolean;
insert_src_special_every_math: boolean;
insert_src_special_every_hbox: boolean;
insert_src_special_every_vbox: boolean;
insert_src_special_every_display: boolean;

33* Here is how to open the terminal files. t_open_out does nothing. t_open_in, on the other hand, does
the work of “rescanning,” or getting any command line arguments the user has provided. It’s defined in C.

define t_open_out = {output already open for text output }

34¥ Sometimes it is necessary to synchronize the input/output mixture that happens on the user’s terminal,
and three system-dependent procedures are used for this purpose. The first of these, update_terminal, is
called when we want to make sure that everything we have output to the terminal so far has actually left the
computer’s internal buffers and been sent. The second, clear_terminal, is called when we wish to cancel any
input that the user may have typed ahead (since we are about to issue an unexpected error message). The
third, wake_up_terminal, is supposed to revive the terminal if the user has disabled it by some instruction
to the operating system. The following macros show how these operations can be specified with UNIX.
update_terminal does an fflush. clear_terminal is redefined to do nothing, since the user should control the
terminal.
define update_terminal = fflush (term_out)

define clear_terminal = do_nothing
define wake_up_terminal = do_nothing { cancel the user’s cancellation of output }

635 XuIpX PART 3: INPUT AND OUTPUT 13

35¥ We need a special routine to read the first line of TEX input from the user’s terminal. This line is
different because it is read before we have opened the transcript file; there is sort of a “chicken and egg”
problem here. If the user types ‘\input paper’ on the first line, or if some macro invoked by that line does
such an \input, the transcript file will be named ‘paper.log’; but if no \input commands are performed
during the first line of terminal input, the transcript file will acquire its default name ‘texput.log’. (The
transcript file will not contain error messages generated by the first line before the first \input command.)

The first line is even more special if we are lucky enough to have an operating system that treats TEX
differently from a run-of-the-mill Pascal object program. It’s nice to let the user start running a TEX job by
typing a command line like ‘tex paper’; in such a case, TEX will operate as if the first line of input were
‘paper’, i.e., the first line will consist of the remainder of the command line, after the part that invoked TEX.

The first line is special also because it may be read before TEX has input a format file. In such cases,
normal error messages cannot yet be given. The following code uses concepts that will be explained later.
(If the Pascal compiler does not support non-local goto, the statement ‘goto final_end’ should be replaced
by something that quietly terminates the program.)

Routine is implemented in C; part of module is, however, needed for e-TeX.

{Report overflow of the input buffer, and abort 35*) =
begin cur_input.loc_field < first; cur_input.limit_field < last — 1; overflow ("buffer size", buf size);
end

This code is used in sections 31* and 1568.

37¥ The following program does the required initialization. Iff anything has been specified on the command
line, then t_open_in will return with last > first.

function init_terminal: boolean; {gets the terminal input started }
label ezit;
begin t_open_in;
if last > first then
begin loc < first;
while (loc < last) A (buffer[loc] = ") do incr(loc);
if loc < last then
begin init_terminal < true; goto exit;
end;
end;
loop begin wake_up_terminal; write(term_out, “**"); update_terminal;
if —input_ln(term_in, true) then {this shouldn’t happen }
begin write_ln(term_out); write_ln(term_out, ~! End of_ file on the terminal... why?");
init_terminal < false; return;
end;
loc + first;
while (loc < last) A (buffer[loc] = ",") do incr(loc);
if loc < last then
begin init_terminal < true; return; {return unless the line was all blank }
end;
write_In(term_out, "Please type the name of your input file.");
end;
exit: end;

14 PART 4: STRING HANDLING XHTEX 638

38* String handling. Control sequence names and diagnostic messages are variable-length strings of
eight-bit characters. Since Pascal does not have a well-developed string mechanism, TEX does all of its string
processing by homegrown methods.

Elaborate facilities for dynamic strings are not needed, so all of the necessary operations can be handled
with a simple data structure. The array str_pool contains all of the (eight-bit) ASCII codes in all of the
strings, and the array str_start contains indices of the starting points of each string. Strings are referred
to by integer numbers, so that string number s comprises the characters str_pool[j] for str_start_macro|s] <
j < str_start-macro[s + 1]. Additional integer variables pool_ptr and str_ptr indicate the number of entries
used so far in str_pool and str_start, respectively; locations str_pool [pool_ptr] and str_start_macro[str_ptr] are
ready for the next string to be allocated.

String numbers 0 to 255 are reserved for strings that correspond to single ASCII characters. This is in
accordance with the conventions of WEB, which converts single-character strings into the ASCII code number
of the single character involved, while it converts other strings into integers and builds a string pool file.
Thus, when the string constant "." appears in the program below, WEB converts it into the integer 46,
which is the ASCII code for a period, while WEB will convert a string like "hello" into some integer greater
than 255. String number 46 will presumably be the single character ‘.’; but some ASCII codes have no
standard visible representation, and TEX sometimes needs to be able to print an arbitrary ASCII character,
so the first 256 strings are used to specify exactly what should be printed for each of the 256 possibilities.

Elements of the str_pool array must be ASCII codes that can actually be printed; i.e., they must have an
xchr equivalent in the local character set. (This restriction applies only to preloaded strings, not to those
generated dynamically by the user.)

Some Pascal compilers won’t pack integers into a single byte unless the integers lie in the range —128 .. 127.
To accommodate such systems we access the string pool only via macros that can easily be redefined.

define si(#) =# {convert from ASCII_code to packed_ASCII code }
define so(#) =# {convert from packed_ASCII_code to ASCII code }
define str_start_macro(#) = str_start[(#) — too_big_char]

(Types in the outer block 18) +=
pool_pointer = integer; { for variables that point into str_pool }
stronumber = 0 .. ssup_maz_strings; {for variables that point into str_start }
packed_ASCII_code = 0 .. biggest_char; {elements of str_pool array }

39*% (Global variables 13) +=

str_pool: Tpacked_ASCII_code; {the characters }

str_start: Tpool_pointer; {the starting pointers }

pool_ptr: pool_pointer; {first unused position in str_pool }

str_ptr: str_number; {number of the current string being created }
init_pool_ptr: pool_pointer; {the starting value of pool_ptr }
init_str_ptr: str_number; {the starting value of str_ptr }

47* The initial values of str_pool, str_start, pool_ptr, and str_ptr are computed by the INITEX program,
based in part on the information that WEB has output while processing TEX.

(Declare additional routines for string recycling 1686*)
init function get_strings_started: boolean;
{ initializes the string pool, but returns false if something goes wrong }
label done, exit;
var g: str_number; {garbage }
begin pool_ptr < 0; str_ptr < 0; str_start[0] < 0; {Make the first 256 strings 48);
(Read the other strings from the TEX.POOL file and return true, or give an error message and return
false 51%);
exit: end;
tini

649 XyTpX PART 4: STRING HANDLING 15

49% The first 128 strings will contain 95 standard ASCII characters, and the other 33 characters will be
printed in three-symbol form like ‘~~A’ unless a system-dependent change is made here. Installations that
have an extended character set, where for example zchr[’32] = “#°, would like string “32 to be printed as the
single character “32 instead of the three characters 136, 186, ‘132 (~~Z). On the other hand, even people
with an extended character set will want to represent string 15 by ~"M, since ‘15 is carriage_return; the
idea is to produce visible strings instead of tabs or line-feeds or carriage-returns or bell-rings or characters
that are treated anomalously in text files.

Unprintable characters of codes 128-255 are, similarly, rendered ~~80—""ff.

The boolean expression defined here should be true unless TEX internal code number k corresponds to a
non-troublesome visible symbol in the local character set. An appropriate formula for the extended character
set recommended in The TgXbook would, for example, be ‘k € [0, 10 .. 12, 714,715,733, 177 .. 377].
If character k cannot be printed, and k < "200, then character k + 100 or k — 100 must be printable;
moreover, ASCII codes [/ .. 46,760 .. 71,7186, 141 .. "146,°160 .. "171] must be printable. Thus, at
least 80 printable characters are needed.

51%¥ (Read the other strings from the TEX.POOL file and return true, or give an error message and return
false 51%) =

g < loadpoolstrings ((pool_size — string_vacancies));

if g =0 then
begin wake_up_terminal; write_ln(term_out, ~ ! You_have to,increase POOLSIZE. °);
get_strings_started < false; return;
end;

get_strings_started <— true;

This code is used in section 47*.
52¥ Empty module

53*% Empty module

16 PART 5: ON-LINE AND OFF-LINE PRINTING XHTEX §54

54¥% On-line and off-line printing. Messages that are sent to a user’s terminal and to the transcript-
log file are produced by several ‘print’ procedures. These procedures will direct their output to a variety of
places, based on the setting of the global variable selector, which has the following possible values:

term_and_log, the normal setting, prints on the terminal and on the transcript file.

log_only, prints only on the transcript file.

term_only, prints only on the terminal.

no_print, doesn’t print at all. This is used only in rare cases before the transcript file is open.

pseudo, puts output into a cyclic buffer that is used by the show_context routine; when we get to that routine
we shall discuss the reasoning behind this curious mode.

new_string, appends the output to the current string in the string pool.

0 to 15, prints on one of the sixteen files for \write output.

The symbolic names ‘term_and_log’, etc., have been assigned numeric codes that satisfy the convenient
relations no_print + 1 = term_only, no_print + 2 = log_only, term_only + 2 = log_only + 1 = term_and_log.

Three additional global variables, tally and term_offset and file_offset, record the number of characters
that have been printed since they were most recently cleared to zero. We use tally to record the length of
(possibly very long) stretches of printing; term_offset and file_offset, on the other hand, keep track of how
many characters have appeared so far on the current line that has been output to the terminal or to the
transcript file, respectively.

define no_print =16 { selector setting that makes data disappear }
define term_only = 17 { printing is destined for the terminal only }
define log_only =18 {printing is destined for the transcript file only }
define term_and_log =19 {normal selector setting }

define pseudo =20 {special selector setting for show_context }
define new_string =21 {printing is deflected to the string pool }
define maz_selector = 21 { highest selector setting }

(Global variables 13) +=

log_file: alpha_file; {transcript of TEX session }

selector: 0 .. max_selector; {where to print a message }

dig: array [0..22] of 0..15; {digitsin a number being output }

tally: integer; {the number of characters recently printed }

term_offset: 0 .. max_print_line; {the number of characters on the current terminal line }
file_offset: 0 .. maz_print_line; {the number of characters on the current file line }
trick_buf: array [0 .. ssup_error_line] of ASCII_code; {circular buffer for pseudoprinting }
trick_count: integer; {threshold for pseudoprinting, explained later }

first_count: integer; {another variable for pseudoprinting }

665 XoTEX PART 5: ON-LINE AND OFF-LINE PRINTING 17

65¥ Here is the very first thing that TEX prints: a headline that identifies the version number and format
package. The term_offset variable is temporarily incorrect, but the discrepancy is not serious since we assume
that this part of the program is system dependent.

(Initialize the output routines 55) +=
if src_specials_p V file_line_error_style_p V parse_first_line_p then wterm (banner_k)
else wterm (banner);
wterm (version_string);
if format_ident = 0 then wterm_ln("(preloaded format=", dump_name, ") ")
else begin slow_print(format_ident); print_ln;
end;
if shellenabledp then
begin wterm(y");
if restrictedshell then
begin wterm(restricted,”);
end;
wterm_In(~\writel8 enabled. ");
end;
if src_specials_p then
begin wterm_ln (" Source specials enabled.)
end;
if translate_filename then
begin wterm (", (WARNING: translate-file""); fputs(translate_filename, stdout);
wterm_In (" ignored) 7);
end;
update_terminal;

66* The procedure print_nl is like print, but it makes sure that the string appears at the beginning of a
new line.
(Basic printing procedures 57) +=
procedure print_nl(s : str_number); { prints string s at beginning of line }

begin if (selector < no_print) V ((term_offset > 0) A (odd (selector))) V

((file—offset > 0) A (selector > log_only)) then print_ln;
print(s);
end;

18 PART 5: ON-LINE AND OFF-LINE PRINTING XHTEX 875

75¥ Here is a procedure that asks the user to type a line of input, assuming that the selector setting is
either term_only or term_and_log. The input is placed into locations first through last — 1 of the buffer
array, and echoed on the transcript file if appropriate.
This procedure is never called when interaction < scroll_mode.
define prompt_input (#) =
begin wake_up_terminal; print(#); term_input;
end {prints a string and gets a line of input }
procedure term_input; {gets a line from the terminal }
var k: 0.. buf size; {index into buffer }
begin update_terminal; {now the user sees the prompt for sure }
if —input_In(term_in, true) then
begin limit + 0; fatal_error("End of_ file on the terminal!");
end;
term_offset < 0; {the user’s line ended with (return) }
decr(selector); { prepare to echo the input }
if last # first then
for k « first to last — 1 do print(buffer|[k]);
print_ln; incr(selector); {restore previous status }
end;

676 XoIpX PART 6: REPORTING ERRORS 19

77¥ The global variable interaction has four settings, representing increasing amounts of user interaction:

define batch-mode =0 {omits all stops and omits terminal output }
define nonstop-mode =1 {omits all stops }
define scroll_mode =2 {omits error stops }
define error_stop-mode = 3 {stops at every opportunity to interact }
define unspecified_mode =4 {extra value for command-line switch }
define print_err(#) =
begin if interaction = error_stop_mode then wake_up_terminal;
if file_line_error_style_p then print_file_line
else print_nl("!,");
print (#);
end
(Global variables 13) +=
interaction: batch_mode .. error_stop_mode; {current level of interaction }
interaction_option: batch-mode .. unspecified_-mode; {set from command line }

78% (Set initial values of key variables 23*) +=
if interaction_option = unspecified_mode then interaction < error_stop_mode
else interaction < interaction_option;

80* A global variable deletions_allowed is set false if the get_next routine is active when error is called; this
ensures that get_next and related routines like get_token will never be called recursively. A similar interlock
is provided by set_box_allowed .

The global variable history records the worst level of error that has been detected. It has five possible
values: spotless, warning_issued, error_message_issued, fatal_error_stop, and output_failure.

Another global variable, error_count, is increased by one when an error occurs without an interactive
dialog, and it is reset to zero at the end of every paragraph. If error_count reaches 100, TEX decides that
there is no point in continuing further.

define spotless =0 { history value when nothing has been amiss yet }

define warning_issued =1 { history value when begin_diagnostic has been called }
define error_message_issued =2 { history value when error has been called }
define fatal_error_stop =3 { history value when termination was premature }
define output_failure =4 { history value when output driver returned an error }

(Global variables 13) +=

deletions_allowed: boolean; {is it safe for error to call get_token? }

set_box_allowed: boolean; {is it safe to do a \setbox assignment? }

history: spotless .. output_failure; {has the source input been clean so far? }
error_count: —1 ..100; {the number of scrolled errors since the last paragraph ended }

20 PART 6: REPORTING ERRORS XHTEX 685

85% The jump_out procedure just cuts across all active procedure levels. The body of jump_out simply
calls ‘close_files_and_terminate;’ followed by a call on some system procedure that quietly terminates the
program.

format noreturn = procedure
define do_final_end =
begin update_terminal; ready_already < 0;
if (history # spotless) A (history # warning_issued) then wezit(1)
else uexit (0);
end

(Error handling procedures 82) +=

noreturn procedure jump_out;
begin close_files_and_terminate; do_final_end;
end;

86* Here now is the general error routine.

(Error handling procedures 82) +=
procedure error; {completes the job of error reporting }
label continue, exit;
var ¢: UnicodeScalar; {what the user types }
s1,82,53,s4: integer; {used to save global variables when deleting tokens }
begin if history < error_message_issued then history < error_message_issued;
print_char("."); show_context;
if (halt_on_error_p) then
begin {If close_files_and_terminate generates an error, we’'ll end up back here; just give up in that
case. If files are truncated, too bad. }
if (halting_on_error_p) then do_final_end; {quit immediately }
halting_on_error_p < true; history < fatal_error_stop; jump_out;
end;
if interaction = error_stop_mode then (Get user’s advice and return 87);
incr (error_count);
if error_count = 100 then
begin print_nl(" (That_makes 100 errors; please, try_again.)"); history < fatal_error_stop;
jump_out;
end;
(Put help message on the transcript file 94);
erit: end;

688 XyIEX PART 6: REPORTING ERRORS 21

88¥* It is desirable to provide an ‘E’ option here that gives the user an easy way to return from TEX to
the system editor, with the offending line ready to be edited. We do this by calling the external procedure
call_edit with a pointer to the filename, its length, and the line number. However, here we just set up the
variables that will be used as arguments, since we don’t want to do the switch-to-editor until after TeX has
closed its files.

There is a secret ‘D’ option available when the debugging routines haven’t been commented out.

define edit_file = input_stack[base_ptr]

(Interpret code ¢ and return if done 88*) =
case c of
mon g ngn ngn ongn ngn nyn ngn gt if deletions_allowed then
(Delete ¢ — "0" tokens and goto continue 92);
debug "D": begin debug_help; goto continue; end; gubed
"E": if base_ptr > 0 then
if input_stack[base_ptr].name_field > 256 then
begin edit_-name_start < str_start-macro (edit_file.name_field);
edit_name_length <+ str_start-macro (edit_file.name_field + 1) — str_start-macro (edit_file . name_field);
edit_line < line; jump_out;
end;
"H": (Print the help information and goto continue 93);
"I": (Introduce new material from the terminal and return 91);
"Q","R","S": (Change the interaction level and return 90);
"X": begin interaction < scroll_mode; jump_out;
end;
othercases do_nothing
endcases;
(Print the menu of available options 89)

This code is used in section 87.

97% The following procedure prints TEX’s last words before dying.

define succumb =
begin if interaction = error_stop_mode then interaction < scroll_mode;
{ no more interaction }
if log_opened then error;
debug if interaction > batch_-mode then debug_help;
gubed
history < fatal_error_stop; jump_out; {irrecoverable error }
end

(Error handling procedures 82) 4+=

noreturn procedure fatal_error (s : str_number); {prints s, and that’s it }
begin normalize_selector;
print_err ("Emergency,stop"); help! (s); succumb;
end;

98* Here is the most dreaded error message.

(Error handling procedures 82) +=

noreturn procedure overflow(s : stronumber; n : integer); {stop due to finiteness }
begin normalize_selector; print_err("TeX capacity exceeded, sorry,["); print(s);
print_char ("="); print_int(n); print_char("1");
help2 (" If you really absolutely need, more capacity, ")
("youycan ask a wizard to enlarge me."); succumb;
end;

22 PART 6: REPORTING ERRORS XHTEX §99

99¥% The program might sometime run completely amok, at which point there is no choice but to stop. If
no previous error has been detected, that’s bad news; a message is printed that is really intended for the
TEX maintenance person instead of the user (unless the user has been particularly diabolical). The index
entries for ‘this can’t happen’ may help to pinpoint the problem.

(Error handling procedures 82) +=
noreturn procedure confusion(s : str_number); { consistency check violated; s tells where }
begin normalize_selector;
if history < error_message_issued then
begin print_err("This, can "t happeny, ("); print(s); print_char(")");
help1 ("I m_ broken. Please show this to_ someone who can fix can fix");
end
else begin print_err("I can "t go on meeting you,like jthis");
help2 ("One 0f your faux pas seems to have wounded me deeply...")
("in fact, I m barely conscious. Please fix it and try again.");
end;
succumb;
end;

3

6103 XyIpX PART 7: ARITHMETIC WITH SCALED DIMENSIONS 23

108* Physical sizes that a TEX user specifies for portions of documents are represented internally as scaled
points. Thus, if we define an ‘sp’ (scaled point) as a unit equal to 2716 printer’s points, every dimension
inside of TEX is an integer number of sp. There are exactly 4,736,286.72 sp per inch. Users are not allowed
to specify dimensions larger than 23° — 1 sp, which is a distance of about 18.892 feet (5.7583 meters); two
such quantities can be added without overflow on a 32-bit computer.

The present implementation of TEX does not check for overflow when dimensions are added or subtracted.
This could be done by inserting a few dozen tests of the form ‘if x > 10000000000 then report_overflow’,
but the chance of overflow is so remote that such tests do not seem worthwhile.

TEX needs to do only a few arithmetic operations on scaled quantities, other than addition and subtraction,
and the following subroutines do most of the work. A single computation might use several subroutine calls,
and it is desirable to avoid producing multiple error messages in case of arithmetic overflow; so the routines
set the global variable arith_error to true instead of reporting errors directly to the user. Another global
variable, remainder, holds the remainder after a division.

define remainder = tex_remainder

(Global variables 13) +=
arith_error: boolean; {has arithmetic overflow occurred recently? }
remainder: scaled; {amount subtracted to get an exact division }

113*¥ When TEX “packages” a list into a box, it needs to calculate the proportionality ratio by which the
glue inside the box should stretch or shrink. This calculation does not affect TEX’s decision making, so the
precise details of rounding, etc., in the glue calculation are not of critical importance for the consistency of
results on different computers.

We shall use the type glue_ratio for such proportionality ratios. A glue ratio should take the same amount
of memory as an integer (usually 32 bits) if it is to blend smoothly with TEX’s other data structures. Thus
glue_ratio should be equivalent to short_real in some implementations of Pascal. Alternatively, it is possible
to deal with glue ratios using nothing but fixed-point arithmetic; see TUGboat 3,1 (March 1982), 10-27.
(But the routines cited there must be modified to allow negative glue ratios.)

define set_glue_ratio_zero(#) = # <— 0.0 {store the representation of zero ratio }
define set_glue_ratio_one(#) = # < 1.0 {store the representation of unit ratio }
define float(#) =# {convert from glue_ratio to type real }

define unfloat(#) =# {convert from real to type glue_ratio }

define float_constant(#) = #.0 { convert integer constant to real }

(Types in the outer block 18) +=

24 PART 7B: RANDOM NUMBERS XATEX 6114

132* Packed data. In order to make efficient use of storage space, TEX bases its major data structures
on a memory_word, which contains either a (signed) integer, possibly scaled, or a (signed) glue_ratio, or a
small number of fields that are one half or one quarter of the size used for storing integers.

If x is a variable of type memory_word, it contains up to four fields that can be referred to as follows:

xz.int (an integer)

x.s¢ (a scaled integer)

z.gr (a glue_ratio)
x.hh.lh, x.hh.rh (two halfword fields)

x.hh.b0, x.hh.b1, x.hh.Th (two quarterword fields, one halfword field)
r.9qqq.b0, x.qqqq.b1, x.9qqq.b2, x.qqqq.b3 (four quarterword fields)

This is somewhat cumbersome to write, and not very readable either, but macros will be used to make the
notation shorter and more transparent. The Pascal code below gives a formal definition of memory_word and
its subsidiary types, using packed variant records. TEX makes no assumptions about the relative positions
of the fields within a word.

Since we are assuming 32-bit integers, a halfword must contain at least 16 bits, and a quarterword must
contain at least 8 bits. But it doesn’t hurt to have more bits; for example, with enough 36-bit words you
might be able to have mem_maz as large as 262142, which is eight times as much memory as anybody had
during the first four years of TEX’s existence.

N.B.: Valuable memory space will be dreadfully wasted unless TEX is compiled by a Pascal that packs
all of the memory_word variants into the space of a single integer. This means, for example, that glue_ratio
words should be short_real instead of real on some computers. Some Pascal compilers will pack an integer
whose subrange is ‘0 .. 255’ into an eight-bit field, but others insist on allocating space for an additional sign
bit; on such systems you can get 256 values into a quarterword only if the subrange is ‘—128 .. 127".

The present implementation tries to accommodate as many variations as possible, so it makes few as-
sumptions. If integers having the subrange ‘min_quarterword .. max_quarterword’ can be packed into a
quarterword, and if integers having the subrange ‘min_halfword .. maz_halfword’ can be packed into a
halfword, everything should work satisfactorily.

It is usually most efficient to have min_quarterword = min_halfword = 0, so one should try to achieve this
unless it causes a severe problem. The values defined here are recommended for most 32-bit computers.

define min_quarterword =0 {smallest allowable value in a quarterword }
define maz_quarterword = "FFFF {largest allowable value in a quarterword }
define min_halfword = —"FFFFFFF {smallest allowable value in a halfword }
define maz_halfword = "3FFFFFFF {largest allowable value in a halfword }

133* Here are the inequalities that the quarterword and halfword values must satisfy (or rather, the
inequalities that they mustn’t satisfy):

(Check the “constant” values for consistency 14) +=
init if (mem_min # mem_bot) V (mem_-maz # mem_top) then bad < 10;
tini
if (mem_min > mem_bot) V (mem_maz < mem_top) then bad + 10;
if (min_quarterword > 0) V (maz_quarterword < "TFFF) then bad < 11;
(min_halfword > 0) V (maxz_halfword < "3FFFFFFF) then bad <+ 12;
(min_quarterword < min_halfword) V (maz_quarterword > maz_halfword) then bad < 13;
(mem_bot — sup_main_memory < min_halfword) V (mem_top + sup-main-memory > maz_halfword)
then bad < 14;
if (maz_font_maz < min_halfword) V (max_font_max > maz_halfword) then bad < 15;
if font-mazxz > font_base + max_font_max then bad < 16;
if (save_size > max_halfword) V (maz_strings > maz_halfword) then bad < 17,
if buf-size > maz_halfword then bad + 18;
if maz_quarterword — min_quarterword < "FFFF then bad < 19;

if
if
if

6134 XyIpxX PART 8: PACKED DATA 25

134* The operation of adding or subtracting min_quarterword occurs quite frequently in TEX, so it is
convenient to abbreviate this operation by using the macros ¢i and go for input and output to and from
quarterword format.

The inner loop of TEX will run faster with respect to compilers that don’t optimize expressions like ‘x + 0’
and ‘x — 0’, if these macros are simplified in the obvious way when min_quarterword = 0. So they have been
simplified here in the obvious way.

The WEB source for TEX defines hi(#) = # + min_halfword which can be simplified when min_halfword =
0. The Web2C implementation of TEX can use hi(#) = # together with min_halfword < 0 as long as
maz_halfword is sufficiently large.

define ¢i(#) =# {to put an eight_bits item into a quarterword }
define qo(#) =# {to take an eight_bits item from a quarterword }
define hi(#) =# {to put a sixteen-bit item into a halfword }
define ho(#) =# {to take a sixteen-bit item from a halfword }

135* The reader should study the following definitions closely:
define sc = int { scaled data is equivalent to integer }

(Types in the outer block 18) +=
quarterword = min_quarterword .. maz_quarterword; halfword = min_halfword .. max_halfword;
two_choices =1 ..2; {used when there are two variants in a record }
four_choices =1 ..4; {used when there are four variants in a record }
’#include,_,"texmfmem.h"; word_file = gzFile;

26 PART 9: DYNAMIC MEMORY ALLOCATION XTEX §137

138*%¥ The mem array is divided into two regions that are allocated separately, but the dividing line between
these two regions is not fixed; they grow together until finding their “natural” size in a particular job.
Locations less than or equal to lo_mem_max are used for storing variable-length records consisting of two
or more words each. This region is maintained using an algorithm similar to the one described in exercise
2.5-19 of The Art of Computer Programming. However, no size field appears in the allocated nodes; the
program is responsible for knowing the relevant size when a node is freed. Locations greater than or equal
to hi_mem_min are used for storing one-word records; a conventional AVAIL stack is used for allocation in
this region.

Locations of mem between mem_bot and mem_top may be dumped as part of preloaded format files, by
the INITEX preprocessor. Production versions of TEX may extend the memory at both ends in order to
provide more space; locations between mem_min and mem_bot are always used for variable-size nodes, and
locations between mem_top and mem_max are always used for single-word nodes.

The key pointers that govern mem allocation have a prescribed order:

null < mem_min < mem_bot < lo_mem_maz < hi_mem_min < mem_top < mem_end < mem_mazx.

Empirical tests show that the present implementation of TEX tends to spend about 9% of its running time
allocating nodes, and about 6% deallocating them after their use.

{ Global variables 13) +=

yzmem: Tmemory-word; {the big dynamic storage area }

zmem: tmemory_word; {the big dynamic storage area }

loomem_maz: pointer; {the largest location of variable-size memory in use }
hi_mem_min: pointer; {the smallest location of one-word memory in use }

147*% A call to get_node with argument s returns a pointer to a new node of size s, which must be 2 or
more. The link field of the first word of this new node is set to null. An overflow stop occurs if no suitable
space exists.

If get_node is called with s = 239

, it simply merges adjacent free areas and returns the value maz_halfword.

function get_node(s : integer): pointer; { variable-size node allocation }
label found, exit, restart;
var p: pointer; {the node currently under inspection }
q: pointer; {the node physically after node p }
r: integer; {the newly allocated node, or a candidate for this honor }
t: integer; {temporary register }
begin restart: p < rover; {start at some free node in the ring }
repeat (Try to allocate within node p and its physical successors, and goto found if allocation was
possible 149);
p < rlink(p); {move to the next node in the ring }
until p = rover; {repeat until the whole list has been traversed }
if s = 10000000000 then
begin get_node < max_halfword; return;
end;
if lo_mem_max + 2 < hi_mem_min then
if lo_mem_maz + 2 < mem_bot + mazx_halfword then
(Grow more variable-size memory and goto restart 148);
overflow ("main memory size", mem_max + 1 — mem_min); {sorry, nothing satisfactory is left }
found: link(r) < null; {this node is now nonempty }
stat var_used < var_used + s; {maintain usage statistics }
tats
(Initialize bigger nodes with SyncTEX information 1715%);
get_node < r;
exit: end;

6155 XyIpX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 27

157* An hlist_node stands for a box that was made from a horizontal list. Each hlist_node is seven words
long, and contains the following fields (in addition to the mandatory type and link, which we shall not
mention explicitly when discussing the other node types): The height and width and depth are scaled
integers denoting the dimensions of the box. There is also a shift_amount field, a scaled integer indicating
how much this box should be lowered (if it appears in a horizontal list), or how much it should be moved to
the right (if it appears in a vertical list). There is a list_ptr field, which points to the beginning of the list
from which this box was fabricated; if list_ptr is null, the box is empty. Finally, there are three fields that
represent the setting of the glue: glue_set(p) is a word of type glue_ratio that represents the proportionality
constant for glue setting; glue_sign (p) is stretching or shrinking or normal depending on whether or not the
glue should stretch or shrink or remain rigid; and glue_order(p) specifies the order of infinity to which glue
setting applies (normal, fil, fill, or filll). The subtype field is not used in TEX. In e-TEX the subtype field
records the box direction mode boz_Ir.

define synctez_field_size =1 { Declare the SyncTgX field size to store the SyncTEX information: we
will put file tag and line into 1h and rh fields of one word }

define sync_tag(#) = mem[# — synctex_field_size].hh.lh { The tag subfield }

define sync_line(#) = mem[# — synctez_field_size|.hh.rh { The line subfield }

define hlist_-node =0 { type of hlist nodes }

define box_node_size = 7 + synctez_field_size { number of words to allocate for a box node }
define width_offset =1 {position of width field in a box node }

define depth_offset =2 {position of depth field in a box node }

define height_offset =3 { position of height field in a box node }

define width(#) = mem[# + width_offset].sc { width of the box, in sp }

define depth(#) = mem[# + depth_offset].sc { depth of the box, in sp }

define height (#) = mem[# + height_offset].sc { height of the box, in sp }

define shift_amount(#) = mem[# + 4].sc { repositioning distance, in sp }

define list_offset =5 { position of list_ptr field in a box node }

define list_ptr(#) = link (# + list_offset) { beginning of the list inside the box }

define glue_order (#) = subtype (# + list_offset) {applicable order of infinity }

define glue_sign (#) = type (# + list-offset) { stretching or shrinking }

define normal =0 {the most common case when several cases are named }

define stretching =1 { glue setting applies to the stretch components }

define shrinking =2 {glue setting applies to the shrink components }

define glue_offset =6 { position of glue_set in a box node }

define glue_set(#) = mem[# + glue_offset].gr {a word of type glue_ratio for glue setting }

160* A rule_node stands for a solid black rectangle; it has width, depth, and height fields just as in an
hlist_node. However, if any of these dimensions is —23°, the actual value will be determined by running the
rule up to the boundary of the innermost enclosing box. This is called a “running dimension.” The width is
never running in an hlist; the height and depth are never running in a vlist.

define rule_node =2 { type of rule nodes }

define rule_node_size = 4 + synctez_field_size { number of words to allocate for a rule node }

define null_flag = — 10000000000 { —23°, signifies a missing item }

define is_running (#) = (# = null_flag) {tests for a running dimension }

28 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS XATEX 8163

163*¥ A mark_node has a mark_ptr field that points to the reference count of a token list that contains the
user’s \mark text. In addition there is a mark_class field that contains the mark class.

define mark_node =4 {type of a mark node }

define small_node_size =2 {number of words to allocate for most node types }

define medium_node_size = small_node_size + synctez_field_size { number of words to allocate for
synchronized node types like math, kern, glue and penalty nodes }

define mark_ptr(#) = link(#+ 1) {head of the token list for a mark }

define mark_class(#) = info(# +1) {the mark class }

166¥ The new_ligature function creates a ligature node having given contents of the font, character, and
lig_ptr fields. We also have a new_lig_item function, which returns a two-word node having a given character
field. Such nodes are used for temporary processing as ligatures are being created.

function new_ligature(f : internal_font_number; ¢ : quarterword; q : pointer): pointer;
var p: pointer; {the new node }
begin p + get_node (small_node_size); type(p) + ligature_node; font(lig-char(p)) < f;
character (lig-char (p)) + ¢; lig-ptr(p) < q; subtype(p) < 0; new_ligature < p;
end;

function new_lig_item (c : quarterword): pointer;
var p: pointer; {the new node }
begin p « get_node(small_-node_size); character(p) « ¢; lig-ptr(p) < null; new_lig_item < p;
end;

171* A math_node, which occurs only in horizontal lists, appears before and after mathematical formulas.
The subtype field is before before the formula and after after it. There is a width field, which represents the
amount of surrounding space inserted by \mathsurround.

In addition a math_node with subtype > after and width = 0 will be (ab)used to record a regular math_node
reinserted after being discarded at a line break or one of the text direction primitives (\beginL, \endL,
\beginR, and \endR).

define math-node =9 { type of a math node }
define before =0 { subtype for math node that introduces a formula }
define after =1 { subtype for math node that winds up a formula }

define M_code =2

define begin_M_code = M_code + before { subtype for \beginM node }
define end_M_code = M_code + after { subtype for \endM node }

define L_code =4

define begin_L_code = L_code + begin_-M_code { subtype for \beginL node }
define end_L_code = L_code + end_M_code { subtype for \endL node }
define R_code = L_code + L_code

define begin_R_code = R_code + begin_M_code { subtype for \beginR node }
define end_R_code = R_code + end_M_code { subtype for \endR node }

define end_LR(#) = odd (subtype(#))
define end_LR_type(#) = (L_code * (subtype(#) div L_code) + end_M_code)
define begin_LR_type (#) = (# — after + before)
function new_math(w : scaled; s : small_number): pointer;
var p: pointer; {the new node }
begin p + get_node(medium_node_size); type(p) < math_node; subtype(p) < s; width(p) + w;
new_math < p;
end;

6176 XyIpX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 29

176¥ And here’s a function that creates a glue node for a given parameter identified by its code number;
for example, new_param_glue (line_skip_code) returns a pointer to a glue node for the current \lineskip.

function new_param_glue(n : small_number): pointer;
var p: pointer; {the new node }
q: pointer; {the glue specification }
begin p < get_node(medium_node_size); type(p) < glue_node; subtype(p) < n+1; leader_ptr(p) < null;
q < (Current mem equivalent of glue parameter number n 250); glue_ptr(p) + g;
incr (glue_ref-count (q)); new_param_glue < pj
end;

177¥ Glue nodes that are more or less anonymous are created by new_glue, whose argument points to a
glue specification.

function new_glue(q : pointer): pointer;
var p: pointer; {the new node }
begin p + get-node (medium_node_size); type(p) < glue_node; subtype(p) < normal;
leader_ptr (p) < null; glue_ptr(p) < q; incr(glue_ref-count(q)); new_glue <+ p;
end;

180* The new_kern function creates a kern node having a given width.

function new_kern(w : scaled): pointer;
var p: pointer; {the new node }
begin p + get_node(medium_node_size); type(p) < kern_node; subtype(p) < normal; width(p) < w;
new_kern < p;
end;

183*¥ Anyone who has been reading the last few sections of the program will be able to guess what comes
next.

function new_penalty (m : integer): pointer;
var p: pointer; {the new node }
begin p + get_node(medium_node_size); type(p) < penalty_node; subtype(p) < 0;
{'the subtype is not used }
penalty (p) < m; new_penalty < p;
end;

30 PART 11: MEMORY LAYOUT XATEX 8187

190* If TEX is extended improperly, the mem array might get screwed up. For example, some pointers
might be wrong, or some “dead” nodes might not have been freed when the last reference to them disappeared.
Procedures check_-mem and search_mem are available to help diagnose such problems. These procedures
make use of two arrays called free and was_free that are present only if TEX’s debugging routines have been
included. (You may want to decrease the size of mem while you are debugging.)

define free = free_arr

(Global variables 13) +=
{ The debug memory arrays have not been mallocated yet. }
debug free: packed array [0..9] of boolean; {free cells}
was_free: packed array [0..9] of boolean; {previously free cells }
was-mem_end , was_lo_mazx, was_hi_min: pointer; {previous mem_end, loomem_maz, and hi_mem_min }
panicking: boolean; {do we want to check memory constantly? }
gubed

6199 XyIEX PART 12: DISPLAYING BOXES 31

200¥ Boxes, rules, inserts, whatsits, marks, and things in general that are sort of “complicated” are
indicated only by printing ‘[1’.
procedure short_display(p : integer); { prints highlights of list p }
var n: integer; { for replacement counts }
begin while p > mem_min do
begin if is_char_node(p) then
begin if p < mem_end then
begin if font(p) # font_in_short_display then
begin if (font(p) > font_maz) then print_char("*")
else (Print the font identifier for font(p) 297);
print_char (","); font_in_short_display <+ font(p);
end;
print-ASCII (qo (character (p)));
end;
end
else (Print a short indication of the contents of node p 201);
p + link(p);
end;
end;

202¥ The show_node_list routine requires some auxiliary subroutines: one to print a font-and-character
combination, one to print a token list without its reference count, and one to print a rule dimension.

procedure print_font_and_char(p : integer); { prints char_node data }
begin if p > mem_end then print_esc("CLOBBERED. ")
else begin if (font(p) > font_maz) then print_char("*")
else (Print the font identifier for font(p) 297);
print_char (","); print_ASCII (go(character(p)));
end;
end;
procedure print_mark(p : integer); { prints token list data in braces }
begin print_char ("{");
if (p < hi_mem_min) V (p > mem_end) then print_esc("CLOBBERED.")
else show_token_list (link (p), null, maz_print_line — 10);
print_char("}");
end;
procedure print_rule_dimen(d : scaled); { prints dimension in rule node }
begin if is_running(d) then print_char("*")
else print_scaled (d);
end;

32 PART 12: DISPLAYING BOXES XoTEX — §212

212¥ The code will have to change in this place if glue_ratio is a structured type instead of an ordinary real.
Note that this routine should avoid arithmetic errors even if the glue_set field holds an arbitrary random
value. The following code assumes that a properly formed nonzero real number has absolute value 22° or
more when it is regarded as an integer; this precaution was adequate to prevent floating point underflow on
the author’s computer.

(Display the value of glue_set(p) 212*) =
g < float(glue_set (p));
if (g # float_constant(0)) A (glue-sign(p) # normal) then
begin print(", glue set,");
if glue_sign(p) = shrinking then print("-,"); { The Unix pc folks removed this restriction with a
remark that invalid bit patterns were vanishingly improbable, so we follow their example without
really understanding it. if abs(mem/[p + glue_offset].int) < 4000000 then print(7.7") else }
if fabs(g) > float_constant(20000) then
begin if g > float_constant(0) then print_char(">")
else print("<u-");
print_glue (20000 x unity, glue_order (p), 0);
end
else print_glue (round (unity g), glue_order(p), 0);
end

This code is used in section 210.

§225

228%

charnodes (about 2/3 of the time), and they are glue nodes in about half of the remaining cases.

XoTEX PART 13: DESTROYING BOXES

33

Now we are ready to delete any node list, recursively. In practice, the nodes deleted are usually

procedure flush-node_list(p : pointer); {erase list of nodes starting at p }
label done; {