~)

The
MM -TEX

B "S'f.,'.;.'leard s Mdﬂual'_,;h'

COPynght 1991 by Mlchael Sprvak

All nghts Reserved

A rote on the
IAMS-TEX s Wizard’s Manual

At present the Wizard’s Manual is available only in this form, Zaboriously
printed on a laser printer: The manual was divided into several sections,
and for each section two . dvi files were produced, one for * rinting the
odd-numbered pages, one for the even-numbered pages.

As a result of this procedure, which was carried out fairly hastily, several
anomalies may occur, like running heads o= ctherwise blank pages, or
twc footnotes on a page both numbered 1: these anomaliss are artifacts
that do not occur when the file is handled normally.

In the unlikely event that there is sufficient interest in this Wizard’s Man-
ual to warrant publication as a book, a special rate will be given to those
who have ordered the manual in its current form.

Meanwhile, updates will be issued as bugs are discovered and corrscted,
or as new features are added.

The idea of making an index is toc horrible to contemplate——many,
many entries would probably have dozens of citations. However, s/hen
the manual seems to have reached a stable state I will provide a “scurce”
code. This will notbe a .tex file, but a sort of ASCII representatior: of
the book, so that one can use a text editor to search for anythirg.

Meanwhile, of course, please report any misprints, mistakes, omissions,
bugs, etc., either by mail,

TgXplorators
3707 'W. Alabama, Suits 450-273
Heuston, X, 77(27 U.5.A)

or by e-mail,

spivak@rice.edn

CONTENTS
Part I Preliminaries
Chapter 1. Introduction e e e
1.1 AuS-TeX Conventions e
1.2 = Constructions from. .AMS STEX o e e e e
1.3 . Changes to AVSSTEX; \ldcal: aﬁd \glb’bal ‘assignments :
Chapter 2, GemngstartedamihMMS-m e e e e e e
Chapter 3, Changes to AyS-TEX T
5131 \Err@ e '
1032 \atdsfe.. PO
33 Tests. T
3.4 Spaces after control sequence names in errormessages
85 Linebreaking e e e
3.6 \alloc@Q, \newcount®, and \newbox@ I £
87 Lists. S NS 3 §
8.8 Skipping spaces in \futurelet’s e
39 \loop e e e e e
3.10 Aléfrangals ol e e e e e e N

Chapter 4. Numbering styies P e e
Chapter 5. Printing cardinal and ordinal nwmbers A%
Chapter 6. Inbibiting éxpansion I

* Chapter 7. Invisibility -

A 1 Inv1s1b1e conss“ructtons

......................

ii Contents
Chapter 8. Special considerations for \everypar
Chapter 9. \Page« v v v v v vt e
Chapter 10. Indexing e e e
101 The.ndxfileo
©10.2 \indexproofing
. 10.3 Converting tokensto type 12
104 The \starparts@ and \windex@routines
105 Indexing v v v v e e e
10.6 Changes to the 4yS-TEXManual
107 Invisibility
10.8 Other delimiters for indexentries
10.9 - \idefineand \iabbrev. -
Part II Labels and Cross References
Chapter 11. The \label mechanism & N
11.1 Constructions that can be given {label)’s
“11.2 Restrictions v v 0 v e e e b e e e e e e -
- 11.3 Consequences of these restricdons PRIV SRS
11.4 \Initialize IR P
11.5 The questionoffonts. P
11.6 Storing (label)’s e e e e e e e e e e e
11.7 \refanditsrelatives . -i: %o v v'vie o v v e e .
118 \label v v v i e e
119 \pagelabel e e e e e e
Chapter 12. Beginning the document v
©12.1 Preliminaries” S
122 \document ‘.nL OSSO L Ve L

Conients

Chapter 13. Labels

........................

131 \label
18.2 \pagelabel
Chapter 14. Cross-Referencing
141 Preliminaries
142 \refanditsrelatives.
Chapter 15. Reading auxiliaryfiles
151 \readlax i
152 Stylefiles 0000

Part III Particular Constructions Allowing Labels
and their associates

Chapter 16. Displayed formulas
16.1 Imvisibiity
16.2 Localizinglabels
163 \tag e e
164 N\align
16.5 \alignatand \xalignat

16.6 \gather

Chapter 17. New counters

17.1 \newcounter
17.2 \usecounter

.......................

Chapter 18. Lists

18.1 Style choices
182 Counters,etc. 0 v e e e e e e
18.3 Other preliminaries
184 \list
1856 \item

.........................

...................

.........................

iv Contents

186 \runinitem@ 141
187 \inlevel« o e e e e e e e e 148
188 Noutlevel« i i e e e e e e e 144
189 \endlist e e 144
Chapter 19. \describeand \margins 148
19.1 \describe 148
192 \marginso 149
Chapter 20. \nopunct, \nospace, and \overlong 154
20.1 \nopunct, \nospace, and \overlong 154
20.2 Usingtheflags 159
Chapter2l.\demo 161
Chapter 22, \claim’s 165
221 Preliminaries v v e e e e e e e e 165
2922 \claimformat@@ v & v v v v v oo 166
22.3 Further preliminaries 168
22.4 Startingalclaim 169
22.5 Startinga\claim@c 171
22.6 Startingalclaim@q 173
227 Finishingoff o000 173
292.8 \endclaim e e e e e 175
229 \newclaim e 175
99.10 \shortenclaim v v v 181
22.11 Customizing \claim's 185
Chapter 23. Headinglevels 187
23.1 The.tocfile e e e e e e 187
23.2 Preliminaries e e e e e e e e e e e e 187
23.3 Differentlevelsof \HL. 188
23.4 The\HLconstrucdon « v v v « « .« . 188
23.5 Thel\hlcomstruction « v v v v v o v . . 195
23.6 Other elements of headinglevels 198
23.7 Writinglongtokenlists 199

Contents v

23.8 \HLtoc@and \hltoc@ 201
239 \mainfile, 207
23.10 Creating headinglevels 208
23.11 Inmitializations 211
23.12 \aftertoc@ 212
23.13 Order ofheadinglevels 213
23.14 Naming headerlevels 214
23.15 \Imitialize 221
Chapter 24. Accessing and controlling counters, styles,etc. 224
Chapter 25. Footnotes 240
25.1 Preliminaries 240
25.2 \vfootmote@ 241
25.3 Fancy footnote numbering L. 247
254 \footmark, 249
255 N\foottext 256
256 \footmote, 258

Part IV. Miscellaneous Constructions

Chapter 26. Literalmode 261
26.1 In-lineliteralmode 261
26.2 Displayed literalmode 264
26.3 Notesforthewary 266
26.4 Prohibiting pagebreaks 267
26.5 Indentation e e e e e e 268
266 TAB'S h oo e e e e e e e e e e e 268
26.7 Widowcontrol 270
26.8 Pagebreaks 0L 272
269 \Litbox 274
26.10 The generaldefinition 275
26.11 Nicersyntax 0o 281

vi Contents

Chapter 27. Literal mode in headinglevels 288
27.1 Literalmodein \HLand \h1 289
27.2 Thegeneral definitions 294

Chapter 28. Title, author, etc., in the defaultstyle 298

Chapter 29. The bibliography 301
20.1 Neite 302
29.2 Features of I4S-TEX's bibliography macros 303
29.8 Storingthefields 0. 313
29.4 Starting the bibliography macros 315
20.5 \bibinfo@ 318
29.6 Additionmalflags 320
207 \bib 321
20.8 Thebasic constraction L L. 323
29.9 \mo,\key,.... 325
29.10 Manipulating the \vbox’™es 328
29.11 Line breakingcommands 329
29.12 Adding punctuation beforeafield 332
29.13 \endbib@. 334
29.14 \endbib, \morebib, \anotherbib, and \transl 341

Chapter 30. Interfacingwith BIBTEX 345
80.1 \UseBibTeX 346
30.2 Thebibtex.texfile. 351

Chapter 31. \purge’ing and \unpurge’ing 358

Chapter 32. Packaging figures, tables, ..., with captions 363
32.1 Preliminaries 363
32.2 Staringan\island 366

32.3
324
32.5
32.6
32.7
32.8
32.9
32.10

Contents

Startinga \caption
Formattinga \caption
\ticwrite@
\Htrim@
Other accoutrements for \endisland
\endisland
\newisland

Chapter 33. An overview; placing the packaged figures, tables, ...
331 \place e e e e e
33.2 Automaticplacement L L.
333 Settngthingsup,
334 How\Aplaceworks
33.5 How the \output routineworks
336 Wheninsertionsfloat.
33.7 Whathappenstoan \Hbyw?

Chapter 34. \Aplace, \AAplaceand \Bplace
34.1 Figures, etc., within \Par...\endPar
342 \place@
343 \Aplaceand \AAplace
344 \Bplace
34.5 Changing \pagecontents
346 \breakisland@ and \printisland@
84.7 \bottomfigs@
348 \resetdimtopins@

Chapter 35. \Cplace, \Mplace,and \MXplace
851 \Place@,
3562 \Cplace@.
85.3 \Mplace@and \MXplace@
854 NendPar

Contents

Chapter 36. The \output routine: Ta-ran-ta-ra! Ta-ran-ta-ra!

36.1
36.2
36.3
36.4
36.5
36.6
36.7
36.8
36.9
36.10
36.11
36.12
36.13

Ta-ranta-ral!

\plainoutput
\pagebody
\pagecontents e e e
And wearedone!
When \box255istcosmall
Theendgame
The endgame onceagain
The endgame onceagain
The endgame onceagain
The endgame onceagain
The endgame onceagain
The endgame onceagain
Afinalwarning00

Part VI Front and Back Matter

Chapter 37, Front Matter (Table of Contents, List of Figures,

Tables,etc.)o

87.1 lamstex.stf preliminaries
37.2 Settinganentry
37.3 Further preliminaries for the table of contents
37.4 Starting the \maketoc command
37.5 Redefining \HLand\h1
37.6 \NameHLand \Namehl
877 \maketoc
37.8 Lists of Figures, Tables,etc.
379 Fini oL
Chapter 38. Back matter; theindex
38.1 Preliminaries
38.2 \LETTERand \Entry
383 \Page,etc. e

Contents
384 \Xref,etc.,
38.5 Preliminaries for double columns
386 \makeindex,
387 \combinecols@
388 \doublecolumns@.
38.9 \balancecolumns@
Chapter 39. The indexprogram
301 The.ndxfile
39.2 Theindexprogram
Part VII The Style Files
Imtroduction,
Chapter 40. The paperstyle
40.1 Basicsettings
40.2 Fontsand pointsizeso
403 The .toclevels oL
404 Setting up headinglevels
40.5 Footnotes oo
40.6 Additional “top matter” and “end matter” constructions . .
40.7 Bibliography SRS
408 \maketoc
Chapter 41. Thebookstyle
41.1 Basicsetings
412 Fontsand pointsizes L.
41.3 The .toclevels
41.4 Flushingoutfigures
41.5 \partand \chapter
41.6 \plainoutput
41.7 Other headinglevels
41.8 Footnotes

x Contents

41.9 Bibliographyo 0000 578
41.10 book.stf e e e e e 578
41.11 book.stb oo oo e 583

Chapter 42. The letterstyle 590

Part 1

Preliminaries

\.‘_,/)

Chapter 1. Introduction

This manual is intended for TEX wizards pondering the intricacies of var-
ious I4uS-TEX constructions, as well as for TEXnicians designing style files
for I4S-TEX who need more detailed information than that provided by
the I4S-TEX Style File Designers Manual. Although certain points about
TEX receive detailed explanation, many sections presuppose considerable
TgXpertise, which it would be impractical to try to provide within the scope
of this already lengthy manual.

Despite the manual’s lengthiness, the division into chapters and sections al-
lows specialized constructions used for one part of I44S-TEX to be separated
from those used in other parts. Of course, the various chapters are not com-
pletely independent, and Part I should probably be perused by everyone.

1.1. ApS-TEX Conventions. We will not be analyzing the file amstex.tex it-
self, since a detailed description of AyS-TEX is given in the file amstex.doc.
Nevertheless, certain AS-TEX conventions must be mentioned here, because
they are used throughout lamstex.tex.

First of all, AS-TEX uses the “scratch” tokens \next, \next@, \nextiie,
\nextiii@, In order to keep the number down, many definitions will,
for example, define \nextive back in terms of \next®, \nextii@, etc.

The amstex.doc file mentions the peculiar contortions that are used to
avoid difficulties that might arise when a definition has a clause like

\def\next@{ ... \mext ... }

since a previous \futurelet\next may have let \next be something that is
\outer.

In I\S-TEX, on the other hand, it is simply quite out of the question to
allow anything to be \outer. Something like \claim can’t be outer, for ex-
ample, because then things like \newpre\claim wouldn’t work. But even
something like \bye can't be \outer because it might easily occur right after
a point where I4yS-TEX has to subject the next token to some sort of test
(see the small print notes on pages 100 and 146). Consequently, although
we will continue to reserve \next as the token of choice in all \futurelet
constructions, we will finesse this whole problem by making sure that nothing
in MS-TEX is \outer.

‘g - SGhier 1. Introduction:

The only \outer things in plain TEX are the ASCII form-feed ~"L, the
\new... constructons (\newcount, \newdimen, ...), the \+ from the
\settabs construction, the \beginsection and \proclaim constructions,
and \bye. I#\S-TEX redefines ~~L, the \new... constructions, \+, and
\bye so that they are not \outer, and it makes \beginsection be unde-
fined (I40(S-TEX has its own system of “heading levels”), while Ay(S-TEX has
already made \proclaim be undefined (until a style file is read in).

It should be mentioned that although we no longer have to worry about
\next being \outer, some precautions are still in order—see page 23.

Another A4x(S-TEX convention involves constructions like
\if...\def\next@{\csa}\else\def\next@{\csb}\fi\next@

(It is assumed that the user of this manual understands why this is required
instead of simply \if...\csa\else\csb\fi whenever \csa or \csb has an
argument.)

In TUGBOAT, Volume 8, No. 2, Kabelschacht points out that this can be
replaced by

\if...\expandafter\csa\else\expandafter\csb\fi

We will call this the “K-method”; it is often used without explicit mention. (As
pointed out in the amstex.doc file, however, this method is not always valid
or practicable).

Another frequently used convention of ApS-TEX is “compressed format”.
We often have to make definitions of the form

\def\cs{\futurelet\next\cse}
\def\cs@{\ifx\next(something or other)%
\def\next@{...\cs0Q...}\else
\def\nexte{...\cs@ee...}\fi
\next@}
\def\csee{...}
\def\cs@ee{...}

But this uses up three new control sequence names, \cs@, \cs@@, and \cs@ee,
Just for this one construction. The “compressed format” uses the same names

S

1.2. Constructions from AmS-TEX 5

\next@, \nextii@, etc., over and over again, simply redefining them within
each definition:

\def\cs{)

\def\next@{\ifx\next(something or other)¥%
\def\next@{...\nextii@...}\else
\def\next@{...\nextiiie...}\fi

\next@l}Y,

\def\nextiie{...}}

\def\nextiiie{...}%

\futurelet\next\next@}

Notice that the “first” clause \futurelet\next\next@ has to be made last
(and, although it looks strange at first, it’s perfectly legitimate to have \next@
defined in terms of \next@ in this situation).

Compressed format makes things go a little slower, since \next@, etc., have
to be redefined all the time, but secems worth it, especially since it is usually
used for major formatting constructions that introduce a lot of space anyway.

AumS-TEX also uses the construction

\Invalid@\controlseq

to make \controlseq give an error message. As explained in amstex.doc,
this is recommended for any control sequences (often discovered via a
\futurelet) that function as “syntax” for other control sequences, and con-
sequently shouldn’t be encountered on their own.

1.2. Constructions from AnS-TEX. Some more specific ApS-TEX code should
also be mentioned. First of all, the code

\ifx\amstexloaded@\relax\catcode‘\@=\active
\endinput\else\let\amstexloaded@=\relax\fi

appears near the beginning of the amstex.tex file. This prevents the file
amstex.tex from being loaded twice by making \amstexloaded@ be un-
defined if amstex.tex hasn’t been loaded, but \relax if it has. This is a
necessity because of the two lines

A)

\let\ice=\/
\def\/{\unskip\ic@}

6 Chapter 1. Introduction

that occur later (compare The TEXbook, pp. 382-383).

Testing \amstexloaded@ also allows other macro packages to tell whether
amstex.tex has already been loaded, which is important for IWS-TEX, as
we will see in the next chapter.

AmS-TEX also introduces two new counters, and a new token list,

\newcount\count@@
\newcount\count@Q@@
\toksdef\toks@@=2

in addition to the counter \count@ and token list \toks@ provided by
plain.tex; these are also used in IyS-TEX (see section 3 for the choice
of 2 in the \toksdef).

Furthermore, AnS-TEX introduces the abbreviations

\def\FNe{\futurelet\next}
\def\DN@{\def\next@}
\def\DNii@{\def\nextii@}
\def\RIfM@{\relax\ifmmode}
\def\RIfMIfIe{\relax\ifmmode\ifinner}
\def\setboxz@h{\setbox\z@\hbox}
\def\wdz@{\wd\z@}

\def\boxz@{\box\ze}

These are used throughout I#\S-TEX also. When we show lamstex.tex
code, however, we will usually expand out these definitions, to make things
easier to read. Similarly, certain control sequences from plain, like \z@, \p@,
etc., will usually be expanded out for the sake of readability. Moreover, in
constructions like

\counte@s=. ..
\let\next@=\relax

and so forth, we will often add the optional = signs that are normally omitted
in the code.

We will frequendy use the AyS-TEX control sequence \eat@ defined by

\def\eato#1{}

" r
N

1.3. Changes to ApS-TEX; \local and \global assignments 7

AmS-TEX introduces the token \space@ that has been \let equal to a
space. It is often used after

\futurelet\next\foo

constructions where \foo has to do something special if the next token is a
space. In many cases, \foo must skip over that space, and then execute \goo.
The standard AxS-TEX way of doing this is with the code

\ifx\next\space@\def\next@. {\goo}\else
\def\next@.{\goo}\fi\nexte.

The . after the \next@ makes the space ‘visible’ to TEX.

As we shall see in section 3.8, I4S-TEX introduces a somewhat more eco-
nomical approach to this problem.

By the way, a case like this, where something is part of the syntax for \next@,
is one of the situations where the K-method would not work.

There are a few more ApS-TEX devices that are important in IMy,S-TEX,
but their discussion has been deferred until Chapter 3, since these devices are
actually additions intended for later versions of AyS-TEX.

1.3. Changes to AvS-TEX; \local and \global assignments. Numerous lines
of amstex.tex have been deleted in amstexl . tex because they are not used,
or are modified, by 1amstex.tex. Major changes of this sort are discussed at
the appropriate points.

There are also numerous small changes. For example, all \relaxnext@’s
have been omitted, since MyS-TEX no longer needs that device for dealing
with \outer constructions.

One change was necessary to avoid a conflict: \roman is now used in I4(S-
TEX for a numbering control sequence, whereas it previously had a different
(extremely unlikely) use in ApS-TEX, as a control sequence to be used in math
to produce a roman letter. The latter has now been changed from \roman to
\rom.

One other change should be mentioned explicitly: near the beginning of
amstexl.tex the definitions

\def\height{height}
\def\width{width}
\def\depth{depth}

8 Chapter 1. Introduction

have been inserted, so that ‘height’, ‘width’ and ‘depth’ can be replaced by
the corresponding single tokens in the specifications for various \hrules and
\vrules; these replacements save even more memory space in lamstex.tex,
where rules occur much more frequently.

Finally, I have now conscientiously adhered to The TgXbook’s recommenda-
tions (see pages 301 and 346) that assignments of variables either always be
global or always be local. In most cases, the necessary changes have been
minor (like changing some \xdef’s to \edef’s, or vice versa), but some-
what more extensive changes were required to ensure that \setboxn is
always local for n even and global for n odd; these changes occur in the
definitions of \insplit@, \rendsplit@, \lendsplit@, \lmultline@@@,
\rmultline@@@, \binrel®, \sideset®@, \r@et, \pmb@, and perhaps one
or two other places.

We will exercise comparable care regarding assignments of variables
throughout I4yS-TEX.

i’

e .

Chapter 2. Getting started with LyS-TEX

The first thing in lamstex.tex, after the copyright notice, is

\catcode‘\@=11

to make @ a letter, in order to create “private” control sequences that the
casual user cannot type, as well as to access such private control sequences
from plain.tex and amstexl.tex.

We will always adhere to the convention introduced here, using horizon-
tal lines when we print actual lamstex.tex code, as opposed to examples,
pieces of code, etc. We will often use different line breaks from the actual
lamstex.tex code, so that it will fit better on these printed pages. (It should
also be noted that when we give preliminary pieces of code we will often omit
% signs at the ends of lines, although they are meticulously added when needed
in the code itself)

Since Mp4S-TEX is not supposed to be loaded unless AyS-TEX has already
been loaded, the next code,

\ifx\amstexloaded@\relax\else
\errmessage{AmS-TeX must be loaded before LamS-TeX}\fi

produces an error message if it hasn’t—see the discussion of the code (A) on
page 5.

We will adopt a different scheme for preventing lamstex.tex from be-
ing read in twice, one that doesn’t create a new control sequence name, by
using the fact that lamstex.tex will eventually define the control sequence
\laxread@ (see page 80), while AyS-TEX makes certain that \undefined is
always undefined (see amstex.doc):

\ifx\laxread@\undefined\else\catcode‘\@=\active\endinput\fi

[Other macro packages that need to know whether or not I4\S-TEX has
been loaded can use a similar test, or, if the status of \undefined isn't clear,
they can use the test

\expandafter\ifx\csname laxread@\endcsname\relax

10 Chapter 2. Getting started with Iy,S-TEX

which is false when I444S-TEX has been loaded, but true when it hasn’t been
loaded, since the control sequence produced by \csname. . .\endcsname is
given the value \relax if it hasn't already been defined.]

Next we redefine \err@ from AyS-TEX to produce error messages saying
‘LamS-TeX error:’ instead of ‘AmS-TeX error:’

\def\err@#1{\errmessage{LamS-TeX error: #1}}

\Err@, which is \err@ with ArS-TEX’s “default help message”, will now also
produce such error messages (see section 3.1).

As indicated in section 1.1, we redefine ~~L, the \new... constructions,
\+, and \bye from plain so that they are not \outer,

\def~~L{\par}
\let\+=\tabalign
\def\newcount{\alloc@0\count\countdef\insceunt}
\def\newdimen{\alloc@i\dimen\dimendef\insc@unt}
\def\newskip{\alloc@2\skip\skipdef\inscQunt}
\def\newmuskip{\alloc@3\muskip\muskipdef\@cclvi}
\def\newbox{\alloc@4\box\chardef\insc@unt}
\let\newtoks=\relax
\def\newhelp#1#2{\newtoks#1#1\expandafter{\csname#2\endcsname}}
\def\newtoks{\alloc@5\toks\toksdef\@cclvi}
\def\newread{\alloc@6\read\chardef\sixt@@n}
\def\newwrite{\alloc@7\write\chardef\sixt@en}
\def\newfam{\alloc@8\fam\chardef\sixt@en}
\def\newlanguage{\alloc@9\language\chardef\@cclvi}
\def\newinsert#i{\global\advance\insc@unt by\m@ne

\ch@ck0\insc@unt\count

\ch@cki\insc@unt\dimen

\ch@ck2\insc@unt\skip

\ch@ck4\insc@unt\box

\allocationnumber=\insc@unt

\global\chardef#i=\allocationnumber

\wlog{\string#i=\string\insert\the\allocationnumber}}

Chapter 2. Getting started with \S-TEX 11

\def\newif#1{\count@\escapechar \escapechar\m@ne
\expandafter\expandafter\expandafter
\edef\@if#1{true}{\let\noexpand#i=\noexpand\iftrue}},
\expandafter\expandafter\expandafter
\edef\@if#i{false}{\let\noexpand#i=\noexpand\iffalse},
\@if#1{false}\escapechar\count@} % the condition starts out false

\def\bye{\par\vfill\supereject\end}

and then we

\let\beginsection=\undefined

to make \beginsection undefined (see amstex.doc).

In plain TEX, the \let\newtoks=\relax is inserted before the definition of

\newhelp so that plain.tex can be read in twice. Even though we are not
allowing lamstex.tex to be read in twice, this is still required, since we read it in
after plain.tex!

Chapter 3. Changes to AS-TEX

The next part of I4S-TEX contains various changes to ApS-TEX. Some
of the changes should, and probably eventually will, be made in AyS-TEX,
though they didn’t get included in AnmS-TEX version 2, while other changes
are relevant only for I4yS-TEX. (Further changes to AyS-TEX will be made
later, at the relevant points.)

3.1. \Err@. A\S-TEX’s definition of \Err@,

\def\Err@#i{\errhelp\defaulthelp@\errmessage{AmS-TeX error: #1}}

has been deleted in amstexl.tex, because it can obviously be shortened to

\def\Err@#1{\errhelp\defaulthelp@\erre{#1}}

3.2. \atdef@. ApS-TEX’s original mechanism for defining the active @ char-
acter can be improved considerably.
First of all, we want the active @ to mean
\futurelet\next\ate@

the problem being that we need to make this definition while @ is active

{\catcode‘\@=\active
\defe{...}

even though we want to allow @ as part of the control sequence name \ata.
Now we can easily name \at@ even when @ is active, as

\csname at\string@\endcsname

Of course, we can’t simply say

\def@{\futurelet\next\csname at\string@\endcsname}

12

S

3.2. \atdef@ 13

since @ would then simply \1et\next=a—we need to have the combination
\csname. ..\endcsname expanded out before the \futurelet\next takes
effect.

We could do this with

\def@{\def\next{\futurelet\next}\expandafter\next
\csname at\string@\endcsname}

but that’s somewhat unsatisfactory, since it requires the active @ to make a
subsidiary definition each time it is used.

Another possibility is to use the triple \expandafter trick (see The TEXbook,
page 374), which we will be using later on. But for the present problem the
simplest strategy is to use the code

\edef\next{\gdef\noexpande{\futurelet\noexpand\next
\csname at\string@\endcsname}

\next

Here the \edef makes \next mean

| \gdef l@ﬂ \futurelet|[\next|\ate}

where the boxed control sequences are not expanded out either because they
are primitives or because they are preceded by \noexpand; the \csname. ..
\endcsname is expanded out in the \edef, but the control sequence \at@
that it expands to is made equal to \relax, since \at@ hasn’t been defined
previously—so \at@ isn’t expanded further in the \edef. (Here we are using
the fact that lamstex.tex won't be read in twice [Chapter 2].)

Consequently, when we then call \next we get this \gdef. Thus, to get the
desired definition of the active @ we just need

{\catcode‘\@=\active
\edef\next{\gdef\noexpande{\futurelet\noexpand\next
\csname at\string@\endcsname}}

\next

}

14 Chapter 3. Changes to ApS-TEX

The definition of \at@ itself is now easy, with @ back as a letter. We will call
the very same routine, \at@@, when the next token is a letter, other character,
or control sequence (or active character); for any other type of token we will
call \at@@@, which will be an error message:

\def\ate{}

\ifcat\noexpand\next a\let\next@=\at@@\else
\ifcat\noexpand\nextO\let\next@=\at@@\else
\ifcat\noexpand\next\relax\let\next@=\at@@\else
\let\next@=\at@Q@\fi\fi\fi\next@}

The error message \at@Qe@ is simply

\def\at@@@{\errhelp\athelp@\err@{Invalid use of @}}

using the help message \athelp@ from AyS-TEX.
On the other hand, \at@@ (token) will simply be the control sequence

‘\(token)@at’

if it has been defined, or an error message otherwise. Here we put quotes
around \(token)@at to emphasize that it is a single control word, even when
(token) isn’t a letter; in practice, of course, such control words have to be
constructed using \csname. . .\endcsname:

\def\at@o#1{\expandafter
\ifx\csname\string#10@at\endcsname\relax
\let\next@=\at@ee
\else
\def\next@{\csname\string#10at\endcsname},
\fi
\next@}

Note that we use \string#1 so that the token #1 can be a control sequence
or active character, as well as a letter or other character.

Finally, \atde£f@, the mechanism for defining the value of the active @ on
various tokens, is the same as in AyS-TEX, except that we add a \string:

S

R

3.3, Tests 15

\def\atdef@#1{\expandafter\def\csname\string#i@at\endcsname}

There are two noteworthy things about this redefinition:

(1) The original definition of \atdef@ remains in amstexl.tex, because
it is used for

\atdef@;{...} \atdef@,{...}
\atdef@:{...} \atdef@!{...}
\atdef@?{...} \atdefe@.{...}
\atdefe-{...}

These \atdef@’s give the same results as the new \atdef@ would
give, since for these characters the \string is simply redundant—once
@ is active, @; and @: and so forth will work just as before. (The
\atdef@@\vert is irrelevant: it is deleted in amstexl.tex, and not
used in I4S-TEX.)

(2) Later in I4yS-TEX we are going to make " active. Nevertheless, Ay S-
TEX’s

\atdefQ@"

will still make the combination @" work correctly, because \string"
for " active gives the same result as ApS-TEX's " when " is not active.
Actually, we are going to give a new \atdef@" (section 8), but that will
be done before " is made active, so the same principle still applies.

3.3. Tests. AMS-TEX has the flag \ifin@, which is set only by the routine
\in@, a test to determine whether a particular token appears in any sequence;
this test, in turn, is used only by the routine \tagin@ to check for the pres-
ence of \tag in a sequence. I\S-TEX has numerous tests that are always
performed independently, so it is economical to have a single flag that will
be used by all of them; this flag will also replace \ifin@ from AyS-TEX. So
amstexl.tex deletes the line

\newif\ifin@

16 Chapter 3. Changes to ApS-TEX

and in I4S-TEX we introduce the flag

\newif\iftest@

Moreover, in amstexl.tex we also delete

\def\ine#i1#2{ . . . }
\def\tagine#1{ . . . }

while in M\4S-TEX we redefine the \tagin@ routine so that instead of using
\ifin@ it merely reproduces (an equivalent of) the definition:

\def\tagine#i{\taginefalse
\def\nexte##1\tag##2##3\nexte{\test@true
\ifx\tagin@##2\testefalse\fi}
\next@#1\tag\tagin@\next@
\tagin@false\iftest@\taginQ@true\fi}

3.4. Spaces after control sequence names in error messages. Numerous error
messages in A4rS-TEX use constructions of the form

. . \string\controlseq\space .

to get a space after the control sequence \controlseq in the error message.
However, it saves one token to instead use

. \noexpand\controlseq .

—the \noexpand prevents expansion of \controlseq in the error message,
but we still get a space after \controlseq.

This device is used throughout I4yS-TEX, and the requisite changes were
also made directly in amstexl.tex, since they were so minor.

A : E The first change occurs in the definition of \define® where

\err@{\string\define\space must be . . . }

—

592 3.4. Spaces aﬁamm#&qumiWor messages 17

is replaced by
\err@{\noexpand\define must be . . . }
The next occurs in the definition
\defineQQit1
which takes a control sequence #1 as its argument, where, for example
(A) \err@{\string#1 is already defined}
is changed to
\erre{\noexpand#iis already defined}

with no space before the ‘is’, since it will appear when the error message is given.
[amstex.tex actually has

\err@{\string#i\space is already defined}

which is unnecessary complicated, though it has the same number of tokens as (A).]
Similar replacements are made in the definitions of

\vmodeerrQi#i
\mathmodeerr@i#i
\dmatherr@#i
\nondmatherr@i#i
\onlydmatherr@ii
\nonmatherrei#i
\nonvmodeerr@#i
\textonlyfontQ#1#2

Finally, in the definition of \boldkey (which is actually redefined in lamstex . tex—
see page 31) the

\Err@{\string\boldkey\space can’t ...}
is replaced by

\Err@{\noexpand\boldkey can’t ...}

18 Chapter 3. Changes to ApS-TEX

with a similar change for \boldsymbol.
Note, by the way, that these substitutions cannot be made in

\newhelp\athelp
\newhelp\defahelp

which end up putting things inside \csname. . . \endcsname.

3.5. Line breaking. The original AyS-TEX definition of \nolinebreak had an
extra element \refskip@, which was initially \relax, but which was changed
for the bibliography. In version 2, that aspect of the bibliography macros
(sections 29.8 and 29.11), as well as the indexing macros (section 38.3), has
been improved. Consequently, the four control sequences

\nolinebreak
\allowlinebreak
\linebreak
\newline

will all have something added; it will suffice to add the same thing, which we
will call \1kerns@, to the first three, and something that we will call \nkerns@
to the fourth; like the old \refskip@, these are both initially \relax. The
definitions of these four line-breaking macros are deleted in amstex . tex, and
we now add the new definitions. They differ from the original definitions (see
amstex.doc) in the inclusion of \1kerns@ and \nkerns@; however, these do
not occur in quite the place that \refskip@ occurred in the original definition
of \nolinebreak—that was, in fact, incorrect. We have also simplified the def-
inition of \newline—as indicated in amstex.doc, the case of \newline\par
really isn’t worth worrying about.

\let\lkerns@=\relax

\def\nolinebreak{\relax
\ifmathmode®@
\mathmodeerr@\nolinebreak\else

N

3.6. \alloc@@, \newcount@, and \newbox@ 19

\ifhmode

\saveskip@=\lastskip \unskip

\nobreak

\ifdim\saveskip@ > Opt \hskip\saveskip@\fi

\lkerns@
\else\vmodeerr@\nolinebreak\fi\fi}
\def\allowlinebreak{\relax
\ifmathmode@

\mathmodeerr@\allowlinebreak\else
\ifhmode

\saveskip@=\lastskip \unskip

\allowbreak

\ifdim\saveskip@ > Opt \hskip\saveskip@\fi

\lkerns@
\else\vmodeerr@\allowlinebreak\fi\fi}
\def\linebreak{\relax

\ifmathmode

\mathmodeerr@\linebreak\else
\ifhmode

\unskip\unkern\break\lkerns@
\else\vmodeerr@\linebreak\fi\fi}

\let\nkerns@=\relax

\def\newline{\relax
\ifmathmode
\mathmodeerr@\newline\else
\ifhmode
\unskip\unkern\null\hfill\break\nkerns@
\else\vmodeerr@\newline\fi\fi}},

3.6. \alloc@@, \newcount@, and \newbox@ Near the beginning of ApS-
TeX, \alloc@ is redefined so that it doesn’t write anything to the .log file,
while the original definition is reinstated at the end. This means that the
\new... constructions used to create new counters, (dimen) registers, etc.,
within the file do not write anything to the .1log file.

20 Chapter 3. Changes to ApS-TEX

After redefining \alloc®, AyS-TEX also uses

\let\alloce@=\alloc@

to make \alloc@@ that version of \alloc@, even if called after \alloc@ has
been redefined at the end. In the definition of \1loadmsam, for example, the
code

\alloc@@8\fam\chardef\sixt@en\msafam

functions as a replacement for \newfam\msafam; this not only gets around
the problem that \newfam is still \outer in AyS-TEX, it also ensures that
nothing gets written to the . log file even if \1oadmsam is used after \alloc@
is restored to its old definition.

In the definition of \accentedsymbol, however, a non-outer \newbox is
needed, because it appears in a construction like

\expandafter\newbox\csname ... \endcsname

where we can’t simply use the code for \newbox. So amstex.tex used
\newbox@ as a non-outer version of \newbox. However, the AyrS-TEX defi-
nition,

\def\newbox@{\alloc@4\box\chardef\insc@unt}

because it used \alloc@ rather than \alloc@@, wasn't really the right choice
anyway.

In I4uS-TEX we rectify this situation. First of all, the definitions of
\newbox@ and \accentedsymbol are deleted in amstexl.tex. Then in
lamstex.tex, we

\def\newbox@{\alloc@@4\box\chardef\insc@unt}

and also, for later use,

\def\newcount@{\alloc@@0\count\countdef\insc@unt}

RNy

3.7. Lists 21

Then we redefine \accentedsymbol using \newbox@. In addition, the
combination

\expandafter\eat@\string

in the definition is replaced by \exstring@, since we will introduce this as an
abbreviation for that combination later (section 17.1) (we also take the oppor-
tunity to eliminate two unnecessary \expandafter’s from the original code):

\def\accentedsymbol#1#2{\expandafter
\newbox@\csname\exstring@#1@box\endcsname
\setbox\csname\exstring@#1@box\endcsname

=\hbox{$\meth#2$}
\define#1{\copy\csname\exstring@#1i@box\endcsname{}}}

3.7. Lists. ApS-TEX has two lists, \alloclist@, and \fontlist@, of the
type introduced in The TgXbook, page 378, and it defines \rightappend@,
which is like \rightappenditem from that page.

\alloclist@ is maintained for the \showallocations command, which
is really only for the use of TEXnicians, and MyS-TEX dispenses with this
feature, in order to save space; consequently, in amstexl.tex all material
related to \alloclist@ is deleted.

\fontlist@ is used for the \syntax command, which S-TEX retains,
but for this list of control sequence names it is more efficient to use a list of
the type described on page 379 of The TEXbook:

\\\name;\\\names. ..

Several other lists of this sort will be used in I4(S-TEX; in some cases, we will
even have a list of the form _ _ ____ ... , where _ _ _ are not control
sequence names.

In I4S-TEX we will still be using \rightappend@ on occasion, but we will

also define the routine \rightadd@#1\to#2 to add #1 to one of these simpler
lists #2:

\def\rightadd@#1\to#2{\toks@={\\#1}\toks@@e=\expandafter{#2}}
\xdef#2{\the\toks@@\the\toks@}},
\toks@={}\toksee={}}

292 Chapter 3. Changes to ApS-TEX

In amstexl.tex, the definition of \fontlista@ is deleted, and in IS-TEX
we instead define \fontlist@ to be a lList of this simpler sort:

\def\fontlist@{\\\tenrm\\\sevenrm\\\fiverm\\\teni\\\seveni
\\\fiveil\\tensy\\\sevensy\\\fivesy\\\tenex\\\tenbf
\\\sevenbf\\\fivebf\\\tensi\\\tenit}

Similarly, the definition of \font@ is deleted in amstexl.tex and replaced
in I#4S-TEX by

\def\font@#1=#2 {\rightadde#i\to\fontlist@\font#i=#2 }

(Although \font@ appears in amstexl.tex, it occurs only within other defi-
nitions, so the definition can be deferred to lamstex.tex.)

Although, as mentioned in section 3, the test \ifin@ has been deleted in
amstexl.tex, for a list #1 of control sequences,

\\\name; \\\names. ..

we will need another (simpler) test to determine whether a control sequence
#2 is in the list. Basically we want to use

\def\ismember@#1#2{\test@false\let\next@=#2y,
{\def\\##1{\let\nextii@=##1\ifx\nextii@\next@\global\test@true\fi}#1}}

But since we normally set the flag \iftest@ only locally, we don’t want to use
a \global\test@true in this one situation (compare section 1.8). So instead
we will use a new scratch token, \Next@, for which we will always use \global
assignments. In addition, there are two further details that we will explore in
a moment:

\def\ismember@# 1#2{| \global\let\NextQ=F |\let\next@2'/.
{\def\\##1{\let\nextii0=##1\ifx\nextii@\next@
[\global\let\Next@=T\fil}#1}

\test@false\ifx\NextQ@ T\test@true\fi|l\let\next@=\relax|}

‘M«“../

R

3.7. Lists 23

This test may compared with the test on page 379 of The TEXbook. Using
\let\next@ instead of \def\next@ allows the test

\ismember@#1i\next

to be used after \next has been \let equal to some control sequence by a
\futurelet, which will be important in section 7.2 (on some occasions we
will also be using \ismember@#1#2 when #2 is an explicit argument). But
two precautions are then in order:

e Although actual 1amstex.tex code usually omits = signs after \let’s,
in the above code we need both the boxed = sign and the space afier
it! Reason: Our \futurelet may have \let\next be a space token,
which is thus a (space token) in the notation of The TEXbook, page 269.
According to the syntax rule on page 277, one such space (but only
one) will be ignored after the = sign; if we simply had

\let\next@=#2{\def\\ ...

then the (space token) #2 would be ignored, and \next@ would end
up being the {, which would then disappear, causing infinite confusion
later on.

e Another important precaution is the \1et\next@=\relax at the end.
That is needed because the \futurelet\next may have \let\next
equal something equivalent to \iftrue or \iffalse, so that \next@
would then also be equal to \iftrue or \iffalse. If that situation
were allowed to continue, havoc might ensue the next time we used a
macro containing \next@ within it.

As an example of this latter phenomenon, note that the original plain TEX
definitions

{\catcode‘\’=\active \gdef’{"\bgroup\prime@s}}

\def\prim@s{\prime\futurelet\next\primémes}

\def\pr@m0s{\ifx’ \next\let\next\preees \else\ifx"\next\let\next\preoet
\else\let\next\egroup\fi\fi\next}

24 Chapter 3. Changes to AnS-TEX

later had to be modified by changing \pr@m@s to

\def\prem@s{\ifx’\next\let\nxt\pr@ees \else\ifx"\next\let\nxt\preeet
\else\let\nxt\egroup\fi\fi\nxt}

For example, we might have

$a’\iffirstset x\else y \fi$

where \iffirstset is some user-defined construction, and then the
\futurelet\next in \prim@s would \let\next=\iffirstset. Note that
the appearance of \next after an \ifx test causes no problem, but its appear-
ance within an \if... clause, even following a \let or \def, would make
things go haywire. Similarly, in the definition of \ismember@, the \next@
appears in safe places.

To avoid such problems in general, after any \futurelet we will use only
the token \next, and otherwise \next will not appear in any macros except
after \ifx tests (or \ifcat tests). One definition in amstex.tex requires
modification to adhere to this rule: the definition

\gdef\comment@@Q#1\comment@0e{\ifx\next\comment@0@\let\next\comment@
\else\def\next{\oldcodes@\endlinechar=*\""M\relax}!,
\fi\next}

has been changed in amstexl.tex to

\gdef\comment@Qe#1\comment@Q@{\ifx\next\comment0@@@\let\next@\comment@
\else\def\next@{\oldcodes@\endlinechar=*‘\""M\relax},
\fi\next@}

3.8. Skipping spaces in \futurelet’. On page 7 we mentioned AyS-TEX’s
device for skipping over space tokens in \futurelet constructions. Instead
of using this device directly, which requires somewhat long definitions each
time, I4,,S-TEX uses a special “futurelet-next-skipping-spaces” construction

\FNSse\foo

3.8. Skipping spaces in \futurelet’s 25

which is like \futurelet\next\foo, except that any space tokens after
\foo will be discarded, and \foo will be applied after \next has been \1let
equal to the first non-space token after \foo. \FNSS@#1 begins by storing
#1 in \FNSS@@, and then applies a \futurelet\next construction, calling
\FNSS@@@, which then does the checking for a space:

\def\FNSS@#1{\let\FNSS@e=#1\futurelet\next\FNSSQEQ}

\def\FNSS@ee{\ifx\next\space@
\def\FNSsS@eeee. {\futurelet\next\FNSS@@Q@}\else
\def\FNSseeee.{\FNSSee}\fi
\FNSseeee.}

Thus, when \next happens to be a space, we swallow the space and call the
routine \futurelet\next\FNSS@QQ again, to get the next non-space token;

when we do get a non-space token, we simply apply \FNSS@@, the argument
of \FN3s@.

The ApmS-TEX \atdef@" (see amstex.doc) is deleted from amstexl.tex,
because it can be shortened if we use this \FNSS@ to get the first non-space
token after @":

\atdef@"{\unskip

\def\next@{\ifx\next‘\def\next@‘{\futurelet\next\nextii@}y,
\else\ifx\next\lg\def\next@\lg{\futurelet\next\nextii@}}
\else\def\nexto###i#1{\futurelet\next\nextiii@}\fi\fi
\next@}y,

\def\nextii@{\ifx\next‘\def\next@‘{\sldie**}Y
\else\ifx\next\lq\def\next@\1lq{\sld1ie‘‘}Y
\else\def\next@{\dlsl1e@‘}\fi\fi\next@}y,

\def\nextiii@{\ifx\next’\def\next@’ {\srdre’’}
\else\ifx\next\rq\def\next@\rq{\srdre’’}},
\else\def\next@{\drsr@’}\fi\fi\next@}y,

\FNSS@\next@}

[In our definition of \FNSS@@@ we used a new control sequence \FNSS@QQQ
instead of using a scratch token like \next@ to allow the use of \FNSS@ in
such “compressed format” definitions.]

26 Chapter 3. Changes to ApS-TEX

There is only one other definition in AnS-TEX that is (deleted from
amstexl.tex and) shortened using \FNSS@:

\def\root{/
\def\next@{\ifx\next\uproot\let\next@=\nextii@\else
\ifx\next\leftroot\let\next@=\nextiii@\else
\let\next@=\plainroot@\fi\fi\next@}
\def\nextii@\uproot##i{\uproot@##i\relax\FNSS@\nextivel}},
\def\nextive{\ifx\next\leftroot\let\next@=\nextve\else
\let\next@=\plainroot@\fi\next@}}
\def\nextve@\leftroot##i{\leftrootQ##i\relax\plainroot@l}y,
\def\nextiii@\leftroot##1{\leftrootQ##i\relax
\FNSS@\nextvi@l},
\def\nextvie{\ifx\next\uproot\let\next@=\nextvii@\else
\let\next@=\plainroot@\fi\nexte}),
\def\nextvii@\uproot##i{\uprootQ##i\relax\plainroot@}y,
\bgroup\uproot@\ze\leftroot@\z@
\FNSS@\next@}

However, there are numerous places in I44S-TEX where the use of \FNSS@
will similarly save space, definitely make the extra tokens used for \FNSS@
worth while. Note, moreover, that the above definition of \root not only
saves space, but also avoids introducing the scratch tokens \nextviii@ and
\nextix@ that occur in the original definition, but which occur nowhere else

in ApS-TEX.

3.9. \loop. The same article that introduced the “K-method” (page 4) also
introduced a new definition of plain TEX’s \loop. ..\repeat mechanism,
which we will use in I S-TEX:

\def\loopi#i\repeat{}
\def\iterate{#1\relax\expandafter\iterate\fi}
\iterate\let\iterate=\relax}

This has the property that it allows constructions like

\loop ___ \if... ___ \else ___ \repeat

3.9. \loop 27

where we repeat when the \if... test is false rather than true, which will
turn out to be useful at several points in MyS-TEX.!

Corresponding to this redefinition of \1loop, we add a new definition of
\gloop@ (which is used by the \cfrac construction):

\def\gloop@#1i\repeat{},
\gdef\iterate@{#1\relax\expandafter\iterate@\fil}},
\iterate@\global\let\iterate@=\relax}

The main purpose of redefining \gloop@ is so that it will use \iterate@
rather than \iterate, so that \iterate will only be given a local definition,
not both a local and a global one (compare section 1.3).

In amstexl.tex we delete the line

\newif\ifbadans@

and the definition of \printoptions, because we can define \printoptions
in terms of \iftest@ (section 3). We've deferred this redefinition until now
because it is also a little bit more convenient to use this alternative \1oop test:

\def\printoptions{\We{Do you want S(yntax check),
G(alleys) or P(ages)?"~JType S, G or P, follow by
<return>: }%
\loop
\read -1 to\ans@
\edef\next@{\def\noexpand\Anse{\ans@}}Y,
\uppercase\expandafter{\next@}/,
\ifx\Ans@\S@\global\test@true\syntax\else
\ifx\Ans@\G@\global\test@true\galleys\else
\ifx\Ans@\P@\global\testQtrue\else
\global\test@false\fi\fi\fi
\iftest@
\else
\We{Type S, G or P, follow by <return>: }¥
\repeat}

1 The alternative is to use \if... \test@false \else \test@itrue \fi \iftest@
\repeat.

28 Chapter 3. Changes to ApS-TEX

3.10. A ld frangais. Finally, certain changes are made to amstex.tex to ac-
commodate French styles that make some or all of ; and : and ! and ? into
active characters. In this case, various AuS-TEX macros that involve tests like

\ifx\next!

need to be changed.!

Our goal is to allow all necessary changes to be indicated in a reasonably
short file, say french.tex, which can be read in afler lamstex.tex (so that
it can be loaded on top of a I4S-TEX format file).

The most reasonable approach is to have certain control sequences that
have been \1let equal to the active punctuation symbols, so that we can use
these in an \ifx\next... test. Of course, this can only be done after the
active punctuation symbols have been defined, not in amstexl.tex. To get
around this problem, we will insist that the definition of the active punctuation
symbols in french. tex are not made with an ordinary \de£, but with a special
\APdef, which will manage things properly for us.

For the control sequences that will be \1let equal to the active punctuation
symbols we will use the following control words (which have to be created
using \csname. ..\endcsname): ‘\A@;’ and ‘\A4@:’ and ‘\A@?’ and ‘\AQ@!’.
We begin by assigning the non-active characters as defaunlt values:

\expandafter\let\csname A@;\endcsname=;
\expandafter\let\csname AQ:\endcsname=:
\expandafter\let\csname A@?\endcsname=?
\expandafter\let\csname AQ!\endcsname=!

‘When

\APdef:{ ... }

!In addition, in lamstex.tex we have the problem that certain control sequences, notably those
for commutative diagrams and tables, use certain punctuation as part of their syntax. For exam-
ple, the \ds option for arrows in a commutative diagram is typed in the form \ds{(h;v) (see
page 155 of the 14S-TEX Manual), If we make a definition like \def\ds (#1;#2){...}, then
TEX incorporates a type 12 ; as part of the syntax for \ds. So in a document where ; is active,
the ; that the user types will not be recognized as the proper syntax element. The devices for
handling this problem will be discussed at the appropriate time (in Volume 2).

3.10. A ld frangais 29

appears in french.tex, we want to (1) \def:{ ... }and (2) \let‘\4Q:'=:
(here, as on page 14, we put quotes around \AQ: to emphasize that it is a
single control word; in actual code something like

\expandafter\let\csname A@\string:\endcsname=:

will be needed).
To achieve this, we use

\def\APdef#1{\def\next@{\expandafter
\let\csname AQ\string#i\endcsname=#1},
\afterassignment\next@\def#1}

Thus, for example, \APdef: defines \next@ to mean
\let\A@:'=:

and after the assignment \def :, which swallows the following { ... }, we
perform \next@, so that ‘\A@:’ has now been \let equal to the active :

So, we can produce control sequences that have the value of each active
punctuation symbol that may occur in a file, assuming that \APdef has always
been used in french.tex.

Now consider the original AuS-TEX definition

\def\tdotse{\unskip

\def\next@{$\m@th\mathinner{\1ldotp\ldotp\ldotp}\,
\ifx\next,\,$\else\ifx\next.\,$\else
\ifx\next;\,$\else
\ifx\next:\,$\else
\ifx\next?\,$\else
\ifx\next!\,$\else
$ \ELi\EI\FI\Fi\Fi\fi}¥

\ \futurelet\next\next@}

We want to supplement this with \ifx\next tests that check whether \next
is an active punctuation symbol, in case \tdots@ gets used in a file where that
is the case. We can do this with tests like

\expandafter\ifx\csname A@\string;\endcsname\next

30 Chapter 3. Changes to ApS-TEX

For greater flexibility, when we encounter an active punctuation symbol we
will not necessarily insert the extra \, that the non-active symbol gets; we will
instead insert \fextra@, which by default is

\let\fextra@=\,

(but which french.tex can redefine, if desired).
The original definition of \tdots@ is deleted from amstexl.tex, and a
new definition is given in lamstex.tex:

\def\tdots@{\unskip
\def\next@{$\m@th\mathinner{\ldotp\ldotp\ldotp}\,
\ifx\next,\,$\else\ifx\next.\,$\else
\ifx\next;\,$\else
I}expandafter\ifx\csname A@\string;\endcsname\next|
[\fextra@$\else|
\ifx\next:\,$\else
[\expandafter\ifx\csname A@\string:\endcsname\next|
[\fextra@$\else|
\ifx\next?\,$\else
[}expandafter\ifx\csname A@\string?\endcsname\next|
[\fextrae$\else|
\ifx\next!\,$\else
|\expandafter\ifx\csname A@\string!\endcsname\next|
[\fextra@$\else|
$ \EINEINEINFINEINFI\FANEINEI\EL Y
\ \futurelet\next\next@}

Similarly, the definition of \extrap@ is deleted from amstexl.tex, and in
lamstex.tex we add

\def\extrape#i{}

\ifx\next,\def\nexte{#1i\,}\else
\ifx\next;\def\nexte{#1\,}\else
I}gxpandafter\ifx\csname A@\string;\endcsname\next]

|\def\next@{#1\fextrae}\else|

\ww/

S

e

3.10. A ld francais 31

\ifx\next.\def\next@{#1\,}\else\extra@
\ifextra@\def\next@{#1\,}\else
\let\next@E#1\fi\fi\fi\fi[\fi[\nexte}

The boxed = sign in this code is another case (compare page 23) where the
= sign cannot be omitted, though now the reason is different: we might have
#1 being an = sign! There are similar required ='s in the (original) defini-
tions of \boldsymbol@, \boldkeydots@, and \boldsymboldots@, and in
the new definition of \boldkey, to follow. These = signs and the one in the
definition of \ismember@ are the only ones that actually occur after a \let in
lamstex.tex.

Similarly, the definitions of \dotsc and \keybin@ are deleted from
amstexl.tex, and in lamstex.tex we add

\def\dotsc{\def\next@{\ifx\next;\plainldots@\,\else

!\expandafter\ifx\csname A@\string;\endcsname\nextl
|\plainldots@\fextra@\else|
\ifx\next.\plainldots@\,\else\extra@\plainldots@
\ifextra0\,\fi\fi\£i[\fif}¥

\futurelet\next\next@}

\def\keybin@{\keybin@true
\ifx\next+\else\ifx\next=\else\ifx\next<\else
\ifx\next>\else\ifx\next-\else\ifx\next*\else
\ifx\next:\else
|\expandafter\ifx\csname A@\string;\endcsname\next\else|

\keybin@false\fi\fi\fi\fi\f i\fi\fi| \fi l}~

The definition of \boldkey#1 is also deleted from amstexl.tex. In this
case, where we have a control sequence with an argument, rather than one
that has picked up the next token with a \futurelet\next, and where our
tests are of the form

\ifx#1!
we have to start with

\let\next=#1

32 Chapter 3. Changes to ApS-TEX

so that we can then use things like
\expandafter\ifx\csname A@\string!\endcsname\next

to check for an active !. The new code is:

\def\boldkey#1{\ifcat\noexpand#iaY,
\ifcmmibloaded@{\fam\cmmibfam#i}\else
\Err@{First bold symbol font not loaded}\fi
\else
\let\next[=J#1%
\ifx#1!\mathchar"5\bffam@21 \else
[}expandafter\ifx\csname A@\string!\endcsname\nextl

[\mathchar"5\bffam@21 \else]
\ifx#1(\mathchar"4\bffam@28 \else
\ifx#1)\mathchar"5\bffam@29 \else
\ifx#1+\mathchar"2\bffam@2B \else
\ifx#1:\mathchar"3\bffam@34 \else
|\expandafter\ifx\csname A@\string:\endcsname\nextl

[\mathchar'3\bffam@3A \else]
\ifx#1;\mathchar"6\bffame@3B \else
I\expandafter\ifx\csname A@\string;\endcsname\next|

[\mathchar"6\bffam@3B \else|
\ifx#i=\mathchar"3\bffam@3D \else
\ifx#1i?\mathchar"5\bffam@3F \else
l\expandafter\ifx\csname A@\string?\endcsname\next|

[\mathchar"5\bffam@3F \else|
\ifx#1[\mathchar"4\bffam@5B \else
\ifx#1]\mathchar"5\bffam@5D \else
\ifx#1,\mathchari@63B \else
\ifx#1-\mathcharii@200 \else
\ifx#1.\mathchari@03A \else
\ifx#1/\mathchari@03D \else
\ifx#1<\mathchari@33C \else
\ifx#1>\mathchari@33E \else
\ifx#1x\mathcharii@203 \else

3.10. A ld frangais

\ifx#1]|\mathcharii@064 \else
\ifx#10\boldO\else\ifx#11\bold1\else\ifx#12\bold2\else
\ifx#13\bold3\else\ifx#14\bold4\else\ifx#15\bold5\else
\ifx#16\bold6\else\ifx#17\bold7\else\ifx#18\bold8\else
\ifx#19\bold9\else

\Err@{\noexpand\boldkey can’t be used with #1}/
\FINFINFINFINFINFINFINFINFINFINEINFINFINFINFL
AREACEACSAVFAC AV SAL SACSAV SAVEACSAVEAT AT I NEFNFAV IRV Y1

33

Chapter 4. Numbering styles

Next we define the standard 4,S-TEX numbering styles: \arabic, \alph,
\Alph, \roman, \Roman, and \fnsymbol.

These numbering styles are meant to be applied to a number, not to a counter
(in the I4,S-TEX macros they are usually applied to \number(counter) for
some (counter)). \arabic is consequently quite trivial:

\def\arabic#1{#1}

The definition of \alph#1 uses the fact that the lower-case letters a—z have
positions 97-122 (if some one were to design a perverse font for which this
wasn't true, then \alph would have to be defined differently).

\alph begins by setting the scratch counter \count@ to the value of #1:

\def\alph#i{\count@=#1\relax

We always add the \relax as a precaution in such situations, even ifit may not
be strictly necessary (The TEXbook, page 208, recommends a space, but \relax
seemns best, to avoid any anomalous situations where an unwanted space might
somehow intrude itself into the token stream).

Then we add 96 to the value of \count@ and we print the character
\char\count@, but we give an error message if this would give us a char-
acter past 122 (this could easily happen if some one caused the counter to be
augmented more than 25 times):

\def\alph#1i{\count@=#1i\relax\advance\count@ by 96
\ifnum\count@>122 \Err@{\noexpand\alph invalid for
numbers > 26}\else\char\count@\fi}

(See section 3.4 for the use of \noexpand\alph rather than \string\alph.)

We don’t bother giving an error message if \count@ ends up having a value
less than 97, since reasonable macros will normally start the counter for a
particular construction at 1. (So there is the possibility that some one will
perversely \Reset some construction to 0, say, and then have \alph produce
a left quotation mark ‘! If this really seems bothersome, another check can
easily be added to the code.)

34

Chapter 4. Numbering styles 35

The definition

\def\Alph#1{\count@=#1\relax\advance\count@ by 64
\ifnum\count@>90 \Err@{\noexpand\Alph invalid for
numbers > 26}\else\char\count@\fi}

is exactly analogous, using the fact that the letters A-Z should have the posi-
tions 65-90.

For \roman we just have to

\def\roman#i{\romannumeral#1i\relax}

since TEX provides the \romannumeral primitive. (The \relax is essen-
tial here; otherwise something like \roman{10}3 would be expanded into
\romannumeral103, giving the result ‘ciii’.)

But \Roman is more complicated,

\def\Roman#1{\uppercase\expandafter{\romannumeral#1}}

Here the \expandafter causes expansion after the left brace {. Without the
\expandafter, something like \Roman3 would become

\uppercase{\romannumeral3}

which is just \romannumeral3, and thus ‘ii’. With the \expandafter, we
get

\uppercase{(expansion of \romannumeral3)}

i.e., \uppercase{iiil}, or ‘III.
Note that we don’t need to add \relax after the #1 in his definition, because
\romannumeral#? is expanded within the \uppercase{...}.

36 Chapter 4. Numbering styles

Finally, we have the \fnsymbol numbering style. As the code below shows,
\fnsymbol#1 successively sets

(1) \count@@ = #1

@ \count@ = [“7‘ L]

3) \count@e@ = [#1,; 1] +1

@) \countQ@@ = #1 — 7. .#17_ 1])
Hence -

1 for#1=1,8,15,...
2 for#1=2916,...
\count@@ =
7 for#1="714,21,...
so \count@@ tells which of the symbols *, 1, ¥, ¥, §, ||, # should be printed,
namely, * for \count@@ = 1, } for \count@@ = 2, etc.
On the other hand,
1 for#1=1,...,7
\count@@@ = ¢ 2 for#1i=28,...,14

so \count@@@ is the number of times that this symbol has to be printed. To
print the symbol this many times, we use a loop, initially setting the counter
\count@ to \count@Qe:

\def\fnsymbol#i{\count@=#1i\relax

\count@@=\count@

\advance\count@ by -1 \divide\count@ by 7
\count@@@=\count@ \advance\count@@@ by 1
\multiply\count@ by 7 \advance\count@@ by -\count@
\count@=\count@ee

{\loop
\ifcase\count@@\or*\or\dag\or\ddag\or\P\or\S\or

\text{\I}\or\#\£fi

\advance\count@ by -1 \ifnum\count@>0 \repeat}}

N .
R

o’

Chapter 4. Numbering styles 37

AmS-TEX has already defined \dag, \ddag, \P, and \S, so that they can
be used either in text or in math mode, where they will change size properly;
\text{$\|$} simply does the same for the || symbol (\# needs no special
treatment). Modifications of \dag, ... may be necessary for fonts with different
layouts.

In the above definition we put the \loop inside a group just in case
\fnsymbol happens to be used inside some \loop itself, a somewhat finicky
precaution, since a nested \1oop involving \fnsymbol will never be produced
by any IS-TEX construction. The same precaution will be used for any
Mp4S-TEX \loop that might conceivably occur within another \loop.

Chapter 5. Printing cardinal and ordinal numbers

This chapter is in some sense a companion to the previous one.
First we define \cardnine@#1 for printing the final part of the name of a
cardinal number; it will be applied to a counter with a value from 1, ..., 9:

\def\cardnine@#1{\ifcase#1\or one\or twolor
three\or four\or five\or six\or seven\or eight\or nine\fi}

The number 10 will be used so often in the macros of this chapter that we
want to use \newcount to introduce a counter having that value.

As we mentioned in section 3.6, amstex.tex (and amstexl.tex) redefine
\alloc@ so that it doesn’t write anything to the .Llog file; and

\let\alloc@@=\alloc@

is used so that \alloc@@ is that version of \alloc@, even if called after
\alloc@ has been restored to the old definition from plain TEX at the end.
We now want to reinstate the new definition until the end of lamstex.tex.
Instead of redefining it directly, we just have to

\let\alloc@=\alloc@e@

since \alloc@@ was permanently given the new definition.
Since \newcount is defined in terms of \alloc®, which we have just made
equivalent to \alloc@@, the next code

\newcount\ten@
\ten@=10

does not produce anything in the .log file of a file that has \input lamstex
(nor will any of the other \new. .. constructions to follow).

Although \cardinal{. ..} will normally be applied when . . . is a number,
to be on the safe side, we first safely store the value in a counter,

\def\cardinal#1{\count@=#1\relax

38

S

Chapter 5. Printing cardinal and ordinal numbers 39

and then proceed by cases.

\def\cardinal#i{\count@=#1\relax
\ifnum\count@>99 \number\count@
\else

\ifnum\count@=0 zero),

\else

\ifnum\count@<\ten@ \cardnine@\count@

\else

\ifnum\count@<20

\advance\count@ by -\ten@

\ifcase\count@ ten\or eleven\or twelve\or
thirteen\or fourteen\or fifteen\or sixteen\or
seventeen\or eighteen\or nineteen\fi

\else

\count@@=\count@ \count@@@=\count@@

\divide\count@ by \ten@ \multiply\count@ by \ten@

\advance\count@@@ by -\count@

\divide\count@ by \ten@

\ifcase\count@\or\or twenty\or thirty\or forty
\or fifty\or sixty\or seventy\or eighty\or ninety\fi

\ifnum\count@@@=0 \else-\cardnine@\count@ee\fi

\fi
\fi
\fi
\fi}

Thus, if #1 > 99, we simply typeset this number. If #1 = 0, we simply
typeset ‘zero’. If 0 < #1 < 10, we just use \cardnine@ to print the number.
For 10 < #1 < 20, we must explicitly specify ‘ten’, ... , ‘nineteen’.

Finally, for 20 < #1 < 99, we have to do a little calculation. The next code
successively sets

¢)) \count@@@ = \count@@ = #1

#1
) \count@ = 10- [E]

40 Chapter 5. Priniing cardinal and ordinal numbers
#1
(3) \count@@@ = #1 — 10- [ﬁ]
=#1 (mod 10)
#1
@ \count@ = [1—0]

The first part of the word for #1 is ‘twenty’ if #1 = 20,...,29, and hence
\count@=2; it is ‘thirty’ if #1 = 30,...,39, and hence \count@=3; etc. If
\count@@@ = (the name is complete; otherwise we must add ‘-one’, ‘-two’
..., depending on the value of \count@@@.

3

\ordnine@, for ordinal numbers, is exactly analogous to \cardnine@:

\def\ordnine@#i{\ifcase#i\or first\or second\or
third\or fourth\or fifth\or sixth\or seventh\or
eighth\or ninth\fi}

The ordinal numbers < 100 can be treated in a manner exactly like the
cardinal numbers. But a problem arises for ordinal numbers like ‘100th’,
‘101st’, ‘102nd’, ‘103rd’, ..., ‘109th’, ‘110th’, ‘111¢h’, ‘112th’, ...—now the
proper suffix depends not only on the last digit of the number, but also on
whether the next-to-last digit is a 1.

The routine \ordsuffix@ selects the right suffix in these cases, assuming
that the number in question has been stored in \count@. The first part of
the routine below divides \count@ by 10, and then calculates \count@@@ to
be \count@ (mod 10) [compare the previous calculations for \cardinal]. If
this is 1, so that the next-to-last digit of the number in \count@ was 1, ‘th’ is
selected. Because the original value of \count@ is needed for the second part
of the routine, we need to store it in yet another counter, \count@@@@, which
we have to declare.

This second part simply computes \count@@@ as \count@ (mod 10) [for
the original value of \count@]; if this second part of the routine ends up
being invoked, the correct choice of the suffix depends only on this value of
\counte@ee:

\newcount\count@QQe@

S

\\..,//

Chapter 5. Printing cardinal and ordinal numbers 41

\def\ordsuffix@e{\count00ee=\count@
\divide\count@ by \tene
\count@@@=\count@ \count@@=\count@
\divide\count@@ by \ten@ \multiply\count@@ by \ten@
\advance\count@@@ by -\countee
\ifnum\count@@@=1 th¥
\else
\count@@e@=\count@eee
\count@@=\count@oee
\divide\count@@ by \ten@ \multiply\count@@ by \ten@
\advance\count@@@ by -\count@@
\ifcase\count@@@ th\or st\or nd\or rd\else th\fi
\fi}

\nordinal and \spordinal are easy, since they are simply a number fol-
lowed by the proper suffix, or the suffix superscripted:

\def\nordinal#1{\count@=#1\relax\number\count@\ordsuffixe}
\def\spordinal#i{\count@=#1\relax\number\count@
$~{\text{\ordsuffix@}$}

And \ordinal itself simply mimics \cardinal, using \ordsuffix@ for
numbers > 100:

\def\ordinal#i{\count@=#1\relax
\ifnum\count@>99 \number\count@\ordsuffixe
\else
\ifnum\count@=0 zeroth
\else
\ifnum\count@<\ten@ \ordnine®@\count@
\else
\ifnum\count@<20 \advance\count@ by -\ten@
\ifcase\count@ tenth\or eleventh\or twelfth\or
thirteenth\or fourteenth\or fifteenth\or sixteenth\or
seventeenth\or eighteenth\or nineteenth\fi
\else

42

Chapter 5. Printing cardinal and ordinal numbers

\count@@=\count@

\divide\count@ by \ten@ \multiply\count@ by \ten@
\count@@@=\count@@ \advance\count@e@ by -\count@
\divide\count@ by \ten@

\ifcase\count@\or\or twent\or thirt\or fort\or fift\or
sixt\or sevent\or eight\or ninet\fi

\ifnum\count@@@=0 ieth\else y-\ordnine@\count@ee\fi
\fi

\fi

\fi
\fi}

Chapter 6. Inhibiting expansion

There are numerous situations where we want to suppress expansion, during
both \write’s and \edef’s or \xdef’s, of the numbering control sequences
\arabic, \alph, ... as well as the font change control sequences \rm, \it,
\b{, The latter includes \smc, which may not have been defined yet, so
we take care of that first:

\font@\tensmc=cmcsc10
\textonlyfont@\smc\tensmc

[For the details of \font@ and \textonlyfont@ see amstex.doc (and
also page 22); basically, this is like saying \font\tensmc=cmcsc10 and
\def\smc{\tensmc}.]

We introduce a new token list

\newtoks\noexpandtoks@

which will be a list of commands, and then \noexpands@ will issue these
commands by inserting this token list:

\noexpandtoks@={\let\arabic=\relax\let\alph=\relax
\let\Alph=\relax\let\roman=\relax\let\Roman=\relax
\let\fnsymbol=\relax\let\rm=\relax\let\it=\relax
\let\bf=\relax\let\sl=\relax\let\smc=\relax
\let\/=\relax\let\null=\relax}

\def\noexpands@{\the\noexpandtoks@}

It is casy to define the construction \Nonexpandingi#1, which is supposed
to make \let#1=\relax also be executed:!

\def\Nonexpanding#1{\global\noexpandtoks@
=\expandafter{\the\noexpandtoks@\let#i=\relax}}

!In version 1 of 14yS-TEX, this was called \Noexpand, but that seems too close to \noexpand
for comfort.

43

4 Chapter 6. Inhibiting expansion

\let\/=\relax was added to \noexpandtoks@ because \/ will often oc-
cur in “style” commands (pages 50, 74, 104, et al.) that appear in \edef’s
or \xdef’s and \write’s (pages 71, 76, et al.) and \/ is no longer a prim-
itive in ApS-TEX or MyS-TEX (page 5). Similarly \let\null=\relax was
added because \null sometimes occurs in “style” commands (see page 208,
for example).

Chapter 7. Invisibility

7.1. Invisible constructions. All constructions that are supposed to be “invisi-
ble” (the most important examples being \1abel and \pagelabel) begin with
\prevanish@. If we are in horizontal mode, this sets \saveskip@ (a glue reg-
ister declared in ApS-TEX) to be the previous glue, and then removes that
glue. Otherwise, it simply sets \saveskip@ to Opt.

\def\prevanish@{\saveskip@=0pt
\ifhmode\saveskip@=\lastskip\unskip\fi}

“Invisible” constructions end with \postvanish@, which puts back the
\saveskip@ glue, if greater than zero;! it must also look ahead to see if the
next token is a space, and swallow up that space if the \saveskip@ glue was
greater than zero:

\def\postvanish@{\ifdim\saveskip@>Opt\hskip\saveskip@\fi
\futurelet\next\postvanish@ae}
\def\postvanish@@{\def\next@.{}
\ifx\next\space@\ifdim\saveskip@>Opt\def\next@. {}\fi\fi
\next@.}

Here we use the method of page 7. Note that we don’t want to use \FNSS@
(section 3.8) in this special situation, since we want to eliminate the space only
when \saveskip@ is greater than zero.

[It is important to note that \saveskip@ appears only in these definitions,
except for certain AnS-TEX constructions that will not ever appear within
an “invisible” construction. So we don’t have to worry about the value of
\saveskip@ being clobbered before \postvanish@ is applied.}

These constructions allow us to define the general construction to make
anything “invisible”:

'We don’t want to add \hskip\saveskip® when \savekskip@ is zero, because that case can
occur when there is no previous glue: adding \hskip\saveskip@ might then allow a break
where none was allowed before.

45

46 Chapter 7. Invisibility

\def\invisible#1{\prevanishO\ignorespaces#1\unskip
\postvanish@}

(Notice that, because of the \ignorespaces and \unskip, the remark in the
I4\S-TEX Manual on page 32, lines 6-8, is incorrect.)

We will need a list, \vanishlist@, of all invisible constructions; this will be
a list of the sort discussed in section 3.7. We initialize it as:

\def\vanishlist@{\\\invisible}

7.2. Special considerations for invisible constructions. 1f we have a construction
like

\par
\invisible{...} Some text

then the \prevanish@ in \invisible sets \saveskip@ to Opt. Conse-
quently, the \postvanish@ will not delete the following space token that pre-
cedes ‘Some text’. But this space token is ignored in vertical mode (The
TEXbook, page 282), so we don’t get an extra space before “Some text”.

The situation is quite different, however, if we have

\par
\noindent \invisible{...},Some text

because now the space token is not ignored, since it is encountered in hori-
zontal mode; consequently, we will get an extra space before “Some text”.

In ApS-TEX and I4(S-TEX, the combination \par\noindent has the spe-
cial abbreviation \flushpar. We can avoid this difficulty with invisible con-
structions by redefining \flushpar as

\def\flushpar{\par\noindent\futurelet\next\pretendspace@}

where \pretendspace@ simply inserts \hskip-1pt\hskipipt (preceded by
\nobreak just as a precaution) when \next is something in \vanishliste:

\def\pretendspace@{\ismember@\vanishlist@\next
\iftest@\nobreak\hskip-ipt\hskipipt\£fi}

—

7.2. Special considerations for invisible constructions 47

[A precautionary \relax after the \hskipipt is not needed here—the \fi
will stop the scanning of \hskip.]
As a result of this definition,

\flushpar\invisible{...},
becomes
\par\noindent\nobreak\hskip-1pt\hskipipt\invisible{...},

(and similarly for \flushpar\label{...}, and any other “invisible” con-
structions that we will eventually define, and add to \vanishlist@).

Consequently, the \prevanish@ removes the \hskipipt and then sets
\saveskip@ to 1pt. Then the \postvanish@ adds back the \hskipipt
once again, canceling out the \hskip-1pt. Moreover, since \saveskipQ@ is
now positive, the space token after the \invisible will be thrown away, so
that \invisible{. ..} will really be invisible.!

Note, by the way, that \ismember@ was defined in such a way that the test
\ismember@\vanishlist@\next sets \iftest@ to be true when \next has
been \let equal to a control sequence in \vanishlist@ (page 23).

[In the above definitions, it might seem that we could simply add the
\hskip-1pt\hskipipt in all cases. But that wouldn’t quite work, because
the next construction might begin with an \unskip (e.g., \linebreak or
\dots). Aside from such a case, however, the \hskip-1pt\hskipipt doesn’t
do any harm.]

Since some users might type \noindent instead of \flushpar, we might
as well add the \futurelet\next\pretendspace@ to \noindent also.

\let\noindent@=\noindent
\def\noindent{\par\noindent@\futurelet\next\pretendspace@}

\def\pretendspace@{\ismember@\vanishlist@\next
\iftest@\nobreak\hskip-1ipt\hskipipt\fi}

'If some one has typed \define\foo{\invisible{...}} and then used \flushpar\foo,
this presents no problem, since in this case no space after \foo will appear. (But, of course,
\define\foo/{\invisible{...}} would make ‘\flushpar\foo/,’ behave incorrectly; this
didn’t seem worth worrying about})

48 Chapter 7. Invisibility

\let\flushpar=\noindent

\pretendspace@ will be needed at several other points in I4S-TEX (sec-
tions 16.1, 18.5, et al.).

In amstexl.tex we delete the definition of \flushpar, since it will be
replaced with this new definition.

J
R

Chapter 8. Special considerations for \everypar

Numerous MyS-TEX constructions use \noindent@ to start an unindented
paragraph. If some

\everypar={...}

has been specified in the document, these unindented paragraphs would also
start with the \everypar tokens, which is normally not desired.

Although this might be regarded as a rather paranoid concern, since
\everypar’s should presumably be used only within some region of the docu-
ment that contains only text, I4,/S-TEX contains a special construction to deal
with this problem.

First we introduce a new token list

\newtoks\everypartoks@

and then we define

\def\noindent@@{\par\everypartoks@=\expandafter{\the\everypar}

\everypar={}/,
\noindent@\everypar=\expandafter{\the\everypartoks@}}

Thus, \noindent©@

(1) ends the previous paragraph,

(2) stores the current value of \everypar in \everypartoks@,
(8) sets \everypar to be empty, and

(4) starts an unindented paragraph, which

(5) resets \everypar to its original value for the next paragraph.

Note that the original value of \everypar will not be inserted before the
\noindent@ed paragraph, because it gets the value {} that was current when
the \noindent@ was encountered.

In I4,(S-TEX, \noindent@@ will usually be used instead of \noindent, with
a \futurelet\next\pretendspace@ added when an invisible construction
might follow.

49

Chapter 9. \page

In 14,S-TEX the control sequence \page can be manipulated like \tag,
\claim, etc. Thus, we can use \Reset\page, \newpre\page, But we
want \page by itself to give an error message:

\def\page{\Err@{\noexpand\page has no meaning by itself}}

(Again, see section 3.4 for the use of \noexpand.)

As we will see in Chapter 11, associated with the I4S-TEX construction
\tag we have

\tag@C the counter associated with \tag
\tag@P the “pre” material for \tag
\tag@Q the “post” material for \tag
\tag@S the style for \tag

\tag@N the numbering style for \tag
\tag@F the font for \tag

Likewise, \claim and all other I4\S-TEX constructions that can be given a
(label) have similar counters and control sequences associated with them.

At present, we simply want to consider the counter and control sequences
associated to \page. For \page@C we just use plain TEX’s \pageno

\let\page@C=\pageno

and then we introduce default values (\empty is defined in plain.tex
by \def\empty{}, so \let\page@P=\empty is just a briefer way of saying
\def\page@P{}):

\let\page@P=\empty

\let\page@Q=\empty
\def\page@S#i{#1\/}

\def\page@F{\rm}

\def\page@N{\arabic} ¥ cannot be \let

50

Chapter 9. \page 51

The \/ in \page@S might be useful if \pageQF is ever chosen to be a slanted
font.

We want to have \def\page@F{\rm} rather than \let\page@F=\rm, be-
cause \rm may actually change definitions. For example,

\fontstyle\page{...}
expands out (page 227) to
{\pageCF...}

and if we are in 9-point type at the time, we would expect to get 9-point roman
type, not the 10-point roman type that is in effect at the time that \page@F is
specified.

And, as we will see later (page 59), it is even more critical that we have
\def\page@N{\arabic} rather than \let\page@N=\arabic.

Chapter 10. Indexing

The indexing macros were placed next, because they use the fact that " is
active in I4yS-TEX, and we would like to get this declared soon, so that any
"' appearing in other macros will refer to this active "'. Some of the methods
used here will also be crucial in Chapters 23 and 32.

It should be noted that in version 1 of I S-TEX, the index entries were
written to one file, with the extension .ndx, while the corresponding page
numbers were written to another file, with the extension .npg. That has
all changed, however, and now the entry and the page number are written
together to the .ndx file. Similarly, as we will see in Chapter 23, heading
levels will be written together with their page numbers in the .toc file, and
as we'll see in Chapter 32, Figures, Tables, etc., will be written together with
their page numbers in one file.

10.1. The .ndx file. We will need a flag,

\newif\ifindexing@

to tell whether an index file is being made.

\indexfile will (globally) set the flag \ifindexing@ to be true the first
time it is used; it will also test this flag when called, so that if it is called twice
it will do nothing at all the second time. The first time \index£file is called,
it should create a new output stream,

\newwrite\ndx@

associated with the file \jobname.ndx (where \jobname will be ‘f00’ when
TEX is processing foo.tex).

Instead of using \newwrite, we will just write the code for it instead, sub-
stituting \alloc@@ (page 38) for \alloc@:

\def\indexfile{\ifindexing@\else
\alloc@@7\write\chardef\sixt@0n\ndx@
\immediate\openout\ndx@=\jobname.ndx
\global\indexing@true\fi}

52

e’

10.2. \indexproofing 53

Then (compare section 3.6), since we used \alloc@@ rather then \alloc@,
nothing will be written to the .1log file, even though \indexfile is used after
\alloc@ itself has been redefined at the end of lamstex.tex.

10.2. \indexproofing. We will need an insertion class, called \margin@, for
index entries that are to appear in the margin if \indexproofing has been
specified. So we would like to say ‘\newinsert\margin@. But \newinsert is
defined differently than all other \new. .. constructions in plain, and it will
write something to the .log file, despite our redefinition of \alloc@. So we
instead simply restate everything from plain in the definition of \newinsert
except for the \wlog part:

\globalladvance\insc@unt\m@ne
\ch@ckO\insc@unt\count
\ch@cki\insc@unt\dimen
\ch@ck2\insc@unt\skip
\ch@ck4\insc@unt\box
\allocationnumber\insc@unt
\global\chardef\margin@\allocationnumber

Notice that although this takes up a lot of space in the file, it takes up hardly
any space within TEX itself, just like \newinsert\margin@.

We put no limit on the number of marginal notes on a page, and they take
up no space (compare The TEXbook, page 415):

\dimen\margin@=\maxdimen
\count\margin@=0
\skip\margin@=0pt

The flag \ifindexproofing@ will tell us whether \indexproofing (and/
or \noindexproofing) appears:

\newif\ifindexproofing@
\def\indexproofing{\indexproofing@true}
\def\noindexproofing{\indexproofing@false}

54 Chapter 10. Indexing

10.3. Converting tokens to type 12. If a control sequence \controlseq has
been defined by

\def\controlseq(parameter text){({replacement text)}

(see The TEXbook, page 203, for terminology), then the TEX primitive
\meaning\controlseq

expands to

macro: (parameter text)->(replacement text)

where all non-space tokens are of type 12.
The construction \unmacro@ is used to store the (parameter text) in
\macpar@ and the (replacement text) in \macde£f@:

\def\unmacro@#1:#2->#3\unmacro@{\def \macpare{#2}
\def\macdef@{#3}}

In particular, if we
\def\foo{#1}
where #1 is any text with balanced braces, and we do

\expandafter\unmacro@\meaning\foo\unmacro@

then! \macdef@ will consist of #1 with all non-space tokens converted to type 12.
Some information is lost in the process: multiple spaces in #1 coalesce to
single spaces in \macdef@, control words in #1 are followed by spaces in
\macdef®@ even if no spaces appear after them in #1, and line breaks in #1 sim-
ply become spaces in \macdef@. So this method is not particularly useful for
literal mode, especially since it cannot be applied at all unless #1 has balanced

! There is no problem with : being part of the syntax of \unmacro@ even in a file where : has
been made active (compare section 3.10), because \unmacro@ will always be used like this, to
work on some value of \meaning.

i’

RN

10.3. Converting tokens to type 12 55

braces. Nevertheless, it alleviates considerably the problems that arise when
we want to \write the string #1 to a file without having control sequences
expanded. We simply have to write \macdef@ instead!

More precisely, for some output stream, like \ndx@, instead of using an
\immediate\write like

\immediate\write\ndxe{#1}
we can

\def\nexte{#1}
\expandafter\unmacro@\meaning\next@\unmacro@
\immediate\write\ndxe{\macdefe}

For delayed \write’s we have to be more careful, since \macdef@ may have
been redefined by the time the \write occurs. Instead of

\write\ndx@{\macdef@}
we must use

\edef\next@{\write\ndx@{\macdef@}}
\next@

The \nxd@ is not expanded in this \edef, since it was created with \chardef;
such control sequences aren’t expanded in \edef’s. Consequently, the \edef
simply makes \next@ mean

\write\ndx@{(expansion of \macdef@)}

so that \next@ then produces this \write.

Notice that it is irrelevant that we are writing type 12 tokens to the .ndx
file: once they are written to that file their category codes are completely
irrelevant—if TEX reads this file later, they will simply be given the category
codes that are in force at the time.

56 Chapter 10. Indexing

10.4. The \starparts@ and \windex@ routines. In version 1 of I4yS-TEX,
only invisible entries could have * optional entries, but now even visible entries
can have them. '

We will use a construction \starparts@#1 that determines if #1 contains a
* and defines

\stari@ to be all of #1
\starii@ to be the part of #1 before the first * (or all of #1 if there is none)
\stariii@ tobe the partof #1 after the first * (or empty if there is none)

We begin by choosing the values that will hold when no * appears:

\def\starparts@#i{\def\starie{#1}\def\stariie{#1}\let\stariii@=\empty

Then we perform a test that sets \iftest@ to be true if * appears in #1 and
false if it doesn’t (compare the definition of \tagin@ in section 3.3):

\test@false

\def\nextQ## 1+##2##3\nexte{\ifx\starpartse##2\test@false
\else\test@true\fi}

\next@#1*\starparts@\next@

If no * appears we are done; otherwise we will have to call another routine
that separates the two parts:

\def\starparts@#i{\def\stari@{#i}\def\stariie{#1}¥
\let\stariii@=\empty
\test@false
\def\next@##1+##2##3\next@{\ifx\starparts@i#t#2\test@false

\else\test@true\fil}y

\next@#1*\starparts@\next@
\iftest@\def\next@{\starparts@e#1\starpartsee}’,
\else\let\next@=\relax\fi\next@}

\def\starparts0Q#1*#2\starparts@@{\def\stariie{#1},
\def\stariii@{*#2}}

T

R

10.4. The \starparts@ and \windex@ routines 57

Onceour "..." and ""..." constructions, to be defined in section 5, have
used \starparts@ to determine \stari@, \starii@, and \stariii@, we
will use \starii@ to typeset ‘...” in the case of a visible index entry, and

then we will use the “write-index” routine \windex@.
When we are making an .ndx file, this routine will first

\expandafter\unmacro@\meaning\stari@\unmacro@

to convert ‘.. ." to type 12 tokens. Then

\edef\macdef@{\string"\macdef@\string"}

will add " at each end, for the sake of the index program; \string" is needed
since " will be active.

Then we will use the \edef of page 55 to write these tokens to the .ndx file.
This will be followed by the page number. Actually, instead of writing just the
page number, we write four groups, the first containing the page number, and
the next three containing the page numbering style, the “pre-page” material,
and the “post-page” material (Chapter 9),

\write\ndx@{{\number\pageno}{\page@N}{\page@P}{\page@q}}

This allows the index program to deal with all sorts of special page numbering
possibilities.
In addition, when \ifindexproofing@ has been set true, we want to

\insert\margin@{\hbox{\rm\vrule \height9pt \depth2pt
\widthOpt ...

where the \hbox begins with a “strut”, designed to keep baselines of successive
entries 11 points apart (see page 7 for the use of \height, ...).!

! Perhaps this is a good place to mention something that tends to be obscured in discussions
about struts. Most TEXnicians are familiar with struts as the device that allows one to place
one \vbox above another and still have the proper space between the bottom baseline of the
top \vbox and top baseline of the bottom \vbox. The problem here is that TEX will normally
insert only \lineskip space between the two boxes, since the baseline of the second box is so
far from the baseline of the first. But the situation with regard to \footnote’s, or members of
other insertion classes, is really quite different: TEX inserts no interline glue whatsoever between two
different members of an insertion dass (The TEXbook, page 125). Thus, even single line footnotes
will be spaced incorrectly without struts} (Struts are discussed further in section 25.2.)

58 Chapter 10. Indexing

This \hbox should contain all material before any * in ‘...’ typeset in
\rm, but all material after the first * should be converted to type 12 tokens,
and typeset in the \tt font,! since it contains things like *e\it, which are
not supposed to be acted upon, but merely convey information to the index

program.
This is all accomplished with the following code:

\def\windex@{\ifindexing@
\expandafter\unmacro@\meaning\stari@\unmacro@
\edef\macdef@{\string"\macdef@\string"}/
\edef\next@{\write\ndx@{\macdef@}}\next@
\write\ndx@{{\number\pageno}{\page@N}{\page@P}{\page@q}}%
\fi
\ifindexproofing@

\ifx\stariii@\empty\else
\expandafter\unmacro@\meaning\stariii@\unmacro@\fi
\insert\margin@{\hbox{\rm\vrule \height9pt \depth2pt

\widthOpt \stariie
\ifx\stariii@\empty\else\tt\macdef@\fi}}Y,
\fi}

At the time that our \write is performed, we will want \noexpandse@ to be
in effect, partly to prevent expansion of any font control sequences that might
appear in \page@P and \page@q, but mainly because we want to be sure that
\page@N isn’t expanded during the \write, since the index program expects
to see a numbering control sequence in this second group.

But there’s no point putting

{\noexpandse
\write\npg@{{\number\pageno}{\page@N}{\page@P}{\page@q}}}

in our definition, because this delayed \write is simply added to the main
vertical list and does not take place until a \shipout. Instead, we will have
to be careful to specify \noexpands@ during any \shipout (section 36.1).
Nevertheless, this is an appropriate time to discuss the problems that would
be encountered if expansion were not prohibited. Expansion would clearly

! Other styles (compare Part VII) may use smaller print for these side notes.

. L

10.5. Indexing 59

cause problems if \page@N is defined as \alph or \Alph, but, in fact, for
this particular \write, expansion would be a problem even if \page@N is de-
fined as \arabic, because \page@N appears in a group by itself ~TEX would
complain during the \write that

! Argument of \page@N has an extra }.

And here comes the most subtle point of all: If we \let\page@l=\arabic,
then our \write would not put \arabic in place of \page@N, even if
\noexpands@ is in effect when it takes place, and we would get the very
same error message. That is because \page@N would have the original
meaning of \arabic—although \noexpands@ says ‘\let\arabic=\relax,
our \page@N would not be this \arabic! On the other hand, when we
\def\page@N{\arabic}, the \write first expands \page®N to (the current)
\arabic, and then doesn’t expand this \arabic further.

10.5. Indexing. Now we are finally ready to make " active,

\catcode‘\"=\active

and define the action of ". As we have already noted (page 15), the combina-
tion @" will still work when * is active.

First of all, " will have to look ahead to see if it is followed by another ",
because this indicates an invisible entry:

\def"{\futurelet\next\quote@}
\def\quote@{\ifx\next"\expandafter\quote@@\else
\expandafter\quote@ee\fi}

Note that we are using the “K-method” here (see section 1.1).
\quote@@Q, the result when " isn't followed by another ", so that we have
a visible index entry, is simply defined as

\def\quote@@@#1"{\starparts@{#1i}\starii@\windex@}

Thus, after \starparts@ defines \stari@, \starii@, and \stariii@, we
typeset \starii@—the part before any *—and then apply the “write-index”
routine \windex@.

60 Chapter 10. Indexing

We should note that as a consequence of the definition of \quote@Q@#1, the
indexed word #1 may be followed by an \insert and/or a “whatsit”, namely,
the \write produced by \windex@. But either an \insert or a “whatsit” can
appear gfter a word without suppressing hyphenation—see The TEXbook, third
paragraph from the bottom on page 454. (This should be compared to the
\makexref macro on page 424 of The TFXbook, where the \insert appears
before the word, and therefore suppresses hyphenation of the word.) Simi-
larly, as we will see in a moment, an invisible index entry simply supplies an
\insert and/or a \write. The warning on page 100 of the I4(S-TEX Manual
is therefore inaccurate: an invisible entry will suppress hyphenation of a word
only if it immediately precedes it, not if it follows it. Similarly, the warnings
on pages 31 and 33 are inaccurate; only a \1abel or \pagelabel immedi-
ately preceding a word will interfere with its hyphenation—in particular, the
example given on page 33 won'’t interfere with hyphenation.

\quote@@ is not that much different from \quote®, except that we want it
to swallow the next ", and begin with \prevanish@, so that it will be invisible:

\def\quote@@"#1"{\prevanish@\starpartse{#1}\windex@
\futurelet\next\quote@eeo}

The \futurelet\next\quote@@QQ is needed to see whether yet another "
occurs after the third " that caused all this to happen. If a fourth " didn’t
occur, we insert the \postvanish@, and if a fourth " did occur, we simply
swallow it up, and then insert the \postvanish@:

\def\quote@@@e{\ifx\next"\def\next@"{\postvanish@}\else
\let\next@=\postvanish@\fi\next@}

10.6. Changes to the IA\S-TEX Manual. Because of changes in the indexing
macros, almost every caveat on page 101 of the I4,S-TEX Manual is wrong.

The first paragraph is wrong: index entries within heading levels will show
up in the margins when \indexproofing has been specified. (Of course, one
had better not type something like

\HL1 "Disappearing" words\endHL

10.8. Other delimiters for index entries 61

since "Disappearing" would then be interpreted as a “quoted” number for
\HL1! Something like \HL1{}"Disappearing" is needed.)

The third paragraph is wrong, because only the parts after the first * will
be typeset in the typewrite font, with characters of type 12.

The fourth paragraph is wrong: \" can be used within an invisible entry.

The fifth paragraph is wrong: invisible entries can now appear anywhere.

It is true, as the final paragraph claims, that index entries in \footnote’s
won’t appear in the margin (they are \insert’s within an \insert, and won't
migrate out). However, no special efforts are required in the \footnote
macros to get indexing to work within \footnote.

10.7. Invisibility. After all this, we want to add " to \vanishlist@:

\rightadd@"\to\vanishlist@

This probably looks wrong, since it is only the double mark "* that indicates
an invisible entry, but

\nobreak\hskip-1ipt\hskipipt"..."
and
\nobreak\hskip-ipt\hskipipt""..."

will both work out just right: before the visible index entry "..." the
\hskip-1ipt\hskipipt will simply be irrelevant, while before an invisible
index entry ""..." it provides the right clues for the \prevanish@ called by
\quote@@ (compare page 47).

10.8. Other delimiters for index entries. The use of " as a delimiter for index
entries conflicts with its use in German styles (this will probably remain true
even when the international font layouts are in use, although then the " will
presumably no longer be active for German). However, it is not very hard to
set up other delimiters for this purpose.

For example, suppose we want to use <. ..> delimiters, so that

Beauty<<beauty>> is <truth>.

62 Chapter 10. Indexing

will produce a index entry for truth, and an invisible index entry for beauty.
For this, we could

\catcode‘\<=\active
\let<=" J we might as well continue using \quote@,

% \def"{...} if we have new definitions for German, or
h \catcode‘\"=12 if " should no longer be active

\def\windex@{\ifindexing@
\expandafter\unmacro@\meaning\nextii@\unmacro@
\xdef\nextii@{\string<\macdef@>}/,

\fi}
\def\quote@{\ifx\next<\expandafter\quote@@\else

\expandafter\quote@@Q\fi}
\def\quote@@0#1>{\starpartse{#1}\starii@\windexe}
\def\quote@@<#1>{\prevanish\starparts@{#1}\windex@

\futurelet\next\quote@eQ}

\def\quote@@@@{\ifx\next>\def\next@>{\postvanish@}\else
\let\next@=\postvanish@\fi\nextQ}

The new version of the index program (see Chapter 39) now accepts any
delimiters in the .ndx file. However, as Chapter 39 points out, for German
alphabetization we would probably want some modifications to deal with words
with umlauts.

We should probably also remove " from \vanishlist@. There is no gen-
eral mechanism for removing something from \vanishlist@. However, since
we know that \vanishlist@ will be of the form

\\\invisible\\" ...
we can

\def\next@\\\invisible\\"#1\next@{\def\vanishliste{#1}}
\expandafter\next@\vanishlist@\next@

For consistency, it would probably be better to choose, once and for all, index entry
delimiters that could be used in all cases; <...> don't satisfy that requirement,

N

‘\v/

10.9. \idefine and \iabbrev 63

since Scandinavian keyboards have letters instead of < and >. There aren’t too many
possibilities left, however! The only reasonable candidates are _ and | (although + and
= would also be possible, if we insisted that people never used them outside of math
mode), and

Beauty| |beautyl| is |truthl, truth beauty
doesn’t look too bad. If only | weren't used for something else in German styles!)
10.9. \idefine and \iabbrev. A construction like
\idefine\cs(parameter text}{(replacement text)}
has to

\define\cs(parameter text){(replacement text)}

and also send this definition off to the .ndx file.

\idefine first stores its argument, \cs say, in \next@, and also stores
\noexpand\cs in \nextii@, for later use:

\def\next@{#1}\def\nextii@{\noexpand#1}/,

Then we will apply the construction \idefine@ once we have suitably swal-
lowed up the (parameter text) and (replacement text):

\def\idefine#1{\def\next@{#1}\def\nextii@{\noexpand#1}
\afterassignment\idefine@\def\nextiii@}

Here the \def\nextiii@ will cause the following (parameter text) and
(replacement text) to be digested into a definition of \nextiii@, after which
assignment we will apply \idefine@.

Since \nextiii@ now has the definition that we want for \cs, the first thing
\idefine®@ must do is to

\let\cs=\nextiiie@

64 Chapter 10. Indexing

Since \next@ was \def’ed to be \cs, we can do this with

\expandafter\let\next@=\nextiii@

Then, if we are indexing, we need to recover the (parameter text) and
(replacement text) for \cs, which is now that for \nextiii@. So we use

\expandafter\unmacro@\meaning\nextiii@\unmacro@

[This construction doesn’t work if ‘~>’ appears in the (parameter text) of a
definition, so let’s hope no one ever makes such a definition.]
Now we want to write

\define\cs(parameter text){(replacement text)}

to the .ndx file. Since \nextii@ was defined as \noexpand\cs, we can do
this with

\immediate\write\ndx@{\noexpand\define
\nextii@\macpar@{\macdef@}}

—mote that the \write will first expand \nextii@ to \noexpand\cs, and
then replace this with \cs, unexpanded. Since all tokens in \macpar@ and
\macdef@ are type 12, we don’t have to worry about their expansion (and
note the remark on page 55).

Thus, the definition of \idefine@ reads:

\def\idefine@{\ifindexing@
\expandafter\let\next@=\nextiii@
\expandafter\unmacro@\meaning\nextiii@\unmacro@

\immediate\write\ndx@{\noexpand\define\nextii@
\macpar@{\macdef@}}\fi}

\iabbrev is simpler. Recall that \iabbrev must be used in the form

\iabbrev*\cs{...}

10.9. \idefine and \iabbrev

so we define

65

\def\iabbrevx#1#2{\ifindexing@
\toks@={#2}),
\immediate\write\ndx@
{\noexpand\abbrev\noexpand#i{\the\toks@}}\fi}

e’

N

Part 11

Labels and
Cross References

R—

Chapter 11. The \1abel mechanism

I4S-TEX’s \label mechanism—one of its most crucial features—involves
several different parts of I4S-TEX, and will occupy the next few chapters.
The present chapter merely explains the basic strategy, without presenting
any explicit code. (Section 4 also explains about an important new construc-
tion that has been added to I4S-TEX.)

11.1. Constructions that can be given (label)’s. For any IS-TEX construction
\foo that can be given a (label), I4\S-TEX uses

\f00@C for the counter associated with \foo

\foo@P for the “pre” material associated with \foo
\foo@Q for the “post” material associated with \foo
\fo0@S for the style associated with \foo

\foo@N for the numbering style associated with \foo
\foo@F for the font associated with \foo

So, for example, \tag has an associated counter \tag@C, and associated
control sequences \tag@P ..., \tag@F; \claim has an associated counter
\claim@C, and associated control sequences \claim@P, ..., \claim@F; etc.
The values of the \. . .@C counters can be manipulated directly, or indirectly
through \Reset and \Offset, and the \...QP, \...QQ, \...@S, \...QN,
and \...QF control sequences can be redefined directly, or indirectly using
\newpre, ..., \newfontstyle. (This is covered in detail in Chapter 24.)

Moreover, every \tag in a displayed formula, every \claim. . .\endclaim,
etc., locally defines four quantities, \thelabelq, ..., \thelabel@@@Q, to be
used if the construction is ever given a (label):

\thelabel@ will be the value of \ref{(label)}
\thelabel@@ will be the value of \Ref{(label)}
\thelabel@@@ will be the value of \nref{(label)}
\thelabel@@@@ will be the value of \pref{(label)}

All I\S-TEX constructions that can be given a (label) implicitly provide
grouping! and outside of the group \thelabel@g, ..., \thelabel@0QQ are

\claim...\endclaim and all similar I4,,S-TEX constructions provide grouping; in the case
of \tag the grouping in question is provided by the display $$. . .$$ in which the \tag lies.

69

70 Chapter 11. The \1abel mechanism

undefined (unless the construction happens to lie within another construction
that can be given a (label)). However, we will initially

\let\thelabel@=\relax
Then the simple test
\ifx\thelabel@\relax

will be true unless we are in a construction where \label is legitimate.

As a (somewhat contrived) example of how this works, suppose that in the
third section of some document, \claim numbers are being printed as (3.i),
(3.i1), (3.1ii), . .. , and that before the tenth \claim we state

\Offset\claim0
\newpost\claim{-A}

so that the number of the tenth \claim will be printed as ‘(3.ix-A).
Then within the tenth \claim

the value of \claim@C will be
\claim@P willbe 3.
\claime@Q willbe -A
\claim@S#1 willbe (#1)
\claim@N willbe \roman
\claim@F will be \bf

and, correspondingly

\thelabel®@ willbe \roman{9}
\thelabel@@ willbe (3.\roman{9}-A)
\thelabel@@@ willbe 9
\thelabel@@@@ willbe 3.\roman{9}-A
The value of the counter for \claim, the numbering style, the pre- and

post-material, and the style for \claim are all involved in the values of
\thelabelg, ..., \thelabel@QQQ; see section 5 regarding the font style.

R

- -

11.3. Consequences of these restrictions 71

11.2. Restrictions. The first concrete example of defining \thelabelg, ...,

\thelabel@@@Q occurs in Chapter 16. For the moment, we simply want to

note that these control sequences will essentially be created using \edef’s, to

insure that they will contain the current values of the counter, numbering style,

etc. Moreover, they will often occur in \xdefs’s and \write’s (see page 76).
This means that

Any control sequences appearing in
\...QP, \...@Q, \...@S, or \...@N
must be ones that can appear in \xdef’s and \write’s.

Actually, we will use \noexpands@ (Chapter 6) to inhibit expansion during the
\edef’s, \xdef’s, and \write’s (pages 82, 84, et al.), so the proper strategy is
to allow only control sequences for which \noexpands@ prevents expansion.

We've already noted (page 44) that \let\/=\relax was added to the to-
ken list \noexpandtoks@ because \/ often appearsin \ . . . @S definitions; and
\let\rm=\relax, ... were added because font change control sequences of-
ten appear also—see, for example, pages 74 and 104.

Similarly, page 385 of the My(S-TEX Manual indicates that if a new font se-
lection command \TimesRoman is ever going to be used in defining the style
for anything that can be labelled, then \Nonexpanding\TimesRoman ought
to be added, and if a new numbering command \Babylonain is ever go-
ing to be used to number anything that can be labelled, then we should add
\Nonexpanding\Babylonian to the file.!

11.3. Consequences of these restrictions. Since constructions like \newpre sim-
ply define various \. . .@P control sequences, the restrictions of the previous
section also mean that in constructions like

\newpre\tag{...}

any conirol sequences in ‘. . ." must be ones for which \noexpands@ prevents expan-
sion. And this means that some of the things stated, and implied, in the IS-
TEX Manual are false.

!The I4\S-TEX Manual also indicates that the style file for that manual (and for this manual,
as well) includes \Nonexpanding\FC, because the “font complement” \FC command occurs in
\footmarkes and \foottext@s.

72 Chapter 11. The \1abel mechanism

While the illustrations of \newpost given for \tag and the illustrations of
\newstyle and \newnumstyle given in connection with \1ist were quite
legitimate, the small print on page 77 gives the example

\newpre\exno{\value\HL1.\value\hl1.}

for numbering a user-created construction. But this example is completely
wrong! Things like \value can’t be used for \newpre.
Instead, we need something like!

\Evaluate\HL1
\edef\HLvalue{\number\Value}
\Evaluate\hli
\newpre\exno{\HLvalue.\number\Value.}

A)

And the situation is even more complicated, because we need to restate this
after every \h11.

11.4. \Initialize. To handle such situations, IyS-TEX now has the con-
struction \Initialize (the detils of which are described in sections 23.4
and 23.15). If you type

\Initialize\hl11{\Evaluate\HL1
\edef\HLvalue{\number\Value}Y,
\Evaulate\hl1
\newpre\exno{\HLvalue.\number\Value.}}

(B)

then the set of commands (A) will be executed each time an \h1l1 occurs.
Similarly,

\Initialize\HL1i{\newpre\h11{}}
would make the pre-material for \h11 be empty even for the default style,

which normally makes the pre-material for \h11 be ‘1.’ in the first \HL1, and
‘2.7 in the second, etc.

!'To be on the safe side, we might prefer \Evaluatepref\HL1 \edef\HLvalue{\Pref},...,
in case "..." has been used to quote a heading level, but \Evaluate will illustrate the point
well enough.

g

11.5. The question of fonis 73

If \chapter and \section have been introduced as names for \HL1 and
\h1l1 (see Chapter 23 for details), then we can substitute \chapter for \HL1
and/or \section for \hl1 in the \Initialize command, e.g.

\Initialize\chapter{\newpre\section{}}

[Different \Initialize commands don’t accumulate, so if you later want
to add \newpre\h12{}, then you must use

\Initialize\HL1{\newpre\hli{}\newpre\h12{}}

This shouldn’t be much of a problem, since such commands are rather special,
and would probably go near the beginning of a document; moreover, if they
did accumulate, it would quite dicey to cancel any such command.]

As an extra bonus, within the \Initialize construction, \pref may be
used with a special significance. For example, in something like

\Initialize\hli{\newpre\exno{\pref.}}

the ‘\pref’ will give the value that \pref would have for a (label) in the \h11

that has just been executed. Consequently, in the default style this will have
the same effect as (B).!

11.5. The question of fonts. Note that the font for \claim is not recorded
anywhere in \thelabelg, ..., \thelabel@@Q@—it is relevant only when the
\claim number is actually printed.

Thus, as we'll see in Chapter 24, \Ref{(label)} will not print ‘(3.ix-AY’, but
simply ‘(8.ix-A) [or ‘(3.ix-A)’ if we are using italic type, etc.]. But we can get
‘(3.ix-A) by typing \fontstyle\claim{\Ref{(label)}}, which expands out
(page 227) to

{\claim@F\Ref{(label)}}

This seems like the optimal arrangement, giving the option of using the same
font or not.

!More precisely, it will have the same effect as if we had used \Evaluatepref, as suggested in
footnote 1 on page 72.

74 Chapter 11. The \1abel mechanism

Note, by the way, that to print \claim numbers as (3.i), (3.ii), (3.iii), ...,
with bold numbers and letters, but with roman parentheses, we would define
\claim@s (either directly, or indirectly through \newstyle), to be

\def\claim@S#i{{\rm (3 #1\/{\rm)}}

and \fontstyle\claim{\Ref{(label)}} will then give the claim number
printed in exactly this way. (The \/ is useful in case \c1aim@F is ever chosen
to be a slanted font.)

11.6. Storing (label)’s. Every time a valid \1abel{{label)} or \pagelabel ap-
pears, so that (label) can be given associated values \ref{(label)}, ..., I4\S-
TEX has to record this information in two places:

(1) The information must be kept internally, in a new control sequence that
we will consider in a moment.
(2) The information must also be written to the auxiliary .1lax file.!

The reason for writing to the auxiliary file, of course, is so that the informa-
tion from that auxiliary file can be read in again the next time the document
is TEX’ed, thus allowing for forward references.

It will be important to distinguish information read in from the auxiliary
file from information created on the current run, and also to distinguish labels
created by \1abel from those created by \pagelabel.

The basic datum that we will be recording in the .1ax file will be a term of
the form

@(label) “V1"Vo" V3 Vs~ (type indicator)

where

V) = value of \ref{(label)}

Vg = value of \Ref{(label)}

V3 = value of \nref{(label)}

V4 = value of \pref{(label)}
'In version 1 of IAyS-TEX, the auxiliary file had the extension .aux; however, this has been
changed to .lax (“I4yS-TEX auxiliary file”), not only to avoid conflict with . aux files produced
by I£TEX, but also because I4yS-TEX can now write . aux files also (Chapter 30); these have the
structure of IfIEX auxiliary files, but contain only entries relevant to BIBTEX, so that BIBTEX can

be used with 14S-TEX files also. In conformity with this change, the old \readaux has been
changed to \readlax (section 15.1).

M’

11.6. Storing (label)’s 75

and the (type indicator) is

0 if (label) was created by a \1abel on the current run

1 if (label) was created by a \1abel on the previous run

2 if (label) was created by a \pagelabel on the current run
3 if (label) was created by a \pagelabel on the previous run

Each \label{(label)} will create a new control sequence ‘\(label)@L’ with the
value

V17 V" V3 V,4"(type indicator)
(we use quotes around \(label)@L as on pages 14 and 29), and it will also write
@(label) "V~ V3" V3~ V4~ (type indicator)

to the .lax file.

@ and “ are simply two conveniently chosen tokens that should not ap-
pear within any (label). Actually, the @ and ~ appearing in the definition of
‘\(label)@L’ and in the .lax file will not be active characters, but will have
category code 11 (so that normally they won’t even appear in the input file).
For @ this is easy to arrange (indeed it would be quite difficult to avoid), since
all our definitions are going to be made while @ has category code 11; for ~
we will simply declare \catcode‘\~=11 at the beginning of our definitions,
and return to \catcode‘\“=\active at the end. Because these “’s are not
active, we do not have to worry about their being expanded in any \xdef’s or
\write’s, which will turn out to be quite a convenience.

When we begin our document, with the \document command, if the .lax
file already exists (from a previous run), it will be read in, line by line, and
each line

@(label) "V~ Vo~ V3~ V4~ (type indicator)
will be used to define ‘\(label)@L’ to have the value

V17V V3™ V4" (type indicator)

76 Chapter 11. The \1abel mechanism

Thus, whenever a . 1ax file already exists, we will start with all the information
obtained on the previous run. Of course, we will have to make sure that ~
has category code 11 while reading in the lines of the .1lax file so that it will
have that category code when it is used in defining the corresponding control
sequence (compare the remark on page 55).

11.7. \reof and its relatives. 1t should be pretty obvious how \ref#1, \Ref#1,
and other cross-referencing commands will work: The test

\expandafter\ifx\csname#10L\endcsname\relax

is true precisely when #1 has not yet been used as a (label). If the test is
true, we simply give an error or warning message. Otherwise, the value of
\csname#1@L\endcsname will be

V17V V3" V4~ (type indicator)

\ref will return V;, \Ref will return Vo, etc.

The really interesting question is how we are going to keep the \1abel and
\pagelabel information updated.

11.8. \1abel. Whenever we encounter a \label{(label)}, we will first check
that we are in a construction that allows (label)’s, using the test (page 70)

\ifx\thelabel@\relax

If the result if true, so that we are in a construction not allowing a (label), we
will simply give an error message. Otherwise, we will use the test

\expandafter\ifx\csname#10L\endcsname\relax

which is true if and only if #1 has not already been used as a (label).
If #1 has not already been used as (label), we will use

\expandafter\xdef\csname#i@L\endcsname{V, V" V3~ V4~ 0}

the O at the end indicating that (label) comes from a \label added on the
current run. In addition, we will

\immediate\write\laxwrite@{Q#1"V, Vo V3~V "1}

N .
e

o .

11.9. \pagelabel 77

with a 1 at the end. When this line of the .1ax file is read by \document on
the next run, ‘\(label)@L’ will then be defined so that its value has a 1 at the
end, indicating that it represents “previous” information.

On the other hand, if (label) zas already been used, we need to examine the
whole sequence

@(label)”..."..."..."..."(type indicator}

and determine the value of the (type indicator).
If this value is O or 2, then (label) has already been used on the current

run, and we will just give an error message saying that (label) has already
been used.

But if the value is 1 or 3, then the information for (label) was compiled
during the previous run. Since we want to allow the previous value to be
changed, we will change the definition of ‘\(label)@L’ so that the sequence

B ¢ 1) <))
that currently appears in the definition is replaced by the appropriate
V1" Ve" V3~ V40
the 0 once again indicating that (label) now comes from a \1abel created on

the current run. And, once again, we will write appropriate information to
the .1lax file, but with 1 replacing 0.

11.9. \pagelabel. The \pagelabel construction works rather differently.
First of all, we don’t use the

\ifx\thelabel@\relax

test, because \pagelabel’s are allowed anywhere.
So we simply start with the test

\expandafter\ifx\csname#1@L\endcsname\relax

If this test is false, then then (label) has never been used, and now we define
‘\(label)@L’ to be

V1"Ve"V3™"V,"2

78 Chapter 11. The \label mechanism

where the 2 at the end indicates that (label) comes from a \pagelabel added
on the current run, and where

V) = value of \page@N{\number\page@C}

Vg = value of \page@S{\page@P\page@N{\number\pagedC}\pageeq}
V3 = value of \number\page@C

V4 = value of \page@P\page@N{\number\page@C}\pageq

As in the case of \label, we also want to write appropriate information
to the .lax file, except that the 2 at the end should be replaced by 3, so
that when this line is read by \document in the next run, ‘\(label)@L’ will be
defined with a 3 at the end, so that it will appear as “previous” information.

But now there is a big difference: for \1abel we will use an \immediate\write,
but for \pagelabel we will use an ordinary \write. That is because only a
(delayed) \write is certain to give the proper value of \page@C—the infor-
mation that we have recorded in \(label)@QL may actually be incorrect, be-
cause the value of \page@C may not be the number of the page on which
the \pagelabel eventually appears. And this means, of course, that only
\pagelabel’s read in from the previous run can be assured of being correct.

The other case, when (label) has already been used, also requires changes.
As before, we must examine the value

...... .+« " ... " (type indicator)

of \(label)@L and determine the value of the (type indicator).

If this value is O or 2, then (label) has already been used on the current
run, and we will just give an error message saying that (label) has already
been used.

On the other hand, if the value is 1 or 3, then the information for (label)
was compiled during the previous run.

Now a 1 indicates that in the previous run (label) was used for a \label,
rather than a \pagelabel—presumably because the user has now decided
to use (label) for a \pagelabel that was used for a \1abel on the previous
run. In this case, we will simply replace the definition of ‘\(label)@L’ with the
appropriate information for this new (label), replacing the 1 with a 2. We will
also write corresponding new information to the .lax file, changing the final

;
‘\-—-»/

11.9. \pagelabel 79

1 to a 3, however, so that when it is read in again on the next run, it will be
recognized as information coming from a previous \pagelabel.

On the other hand, a 3 indicates that in the previous run (label) was used
for a \pagelabel. In this case, as indicated above, this previously obtained
information is more likely to be the correct one. Consequently, we will not
change the definition of ‘\(label)@L’. But we will still write this appropriate
new information (using a delayed \write) to the .1lax file, keeping the final
3, so that it will appear once again as “previous” information on the next run.

The label mechanism in version 2 of I4S-TEX is entirely different, and much

more efficient than, the one used in version 1 of I4$-TEX, which was designed
using a TEX that allowed 3,000 control sequence names. Since I4S-TEX itself uses up
about 2,700 names, not counting additional control sequences introduced by style files,
it seemed imprudent at that time to use a labelling method that introduces a new con-
trol sequence name for each (label). But with that old mechanism, main memory was
usually exhausted after only about 40 or 50 (label)’s had been created (necessitating the
stratagems explained in section 4.8 of the I4,S-TEX Manual), so this excessive wariness
was clearly counterproductive. Moreover, more generous TEXs, allowing at least 3,500
control sequence names, are now quite common (and there’s always tinylams.tex
for the truly parsimonious).

Chapter 12. Beginning the document

12.1. Preliminaries. Since we have to read an existing .1lax file at the begin-
ning of the document, and then write to a new .1lax file during the document,
we first declare

\newread\laxread@
\newwrite\laxwrite@

I4S-TEX makes use of a special sort of list, initially defined to be empty,

\let\fnpages@=\empty

which is used for fancy footnote numbering. As we will see in Chapter 25,
when \fancyfootnotes is in effect, each \footnote will cause I4(S-TEX to

write a special line to the .1ax file: If the first footnote occurs on page 7, say,
then

F7

will be written to the .lax file. If the second and third footnotes occur on
pages 12 and 14, then the lines

F12
and

Fi4

will each be written (sometime later on). These lines are always written with
a (delayed) \write, and the corresponding information is not recorded in-
ternally. On the other hand, when we read in an existing .lax file, any such

F(number) lines will be incorporated into \fnpages@, which will end up look-
ing like

\W7\\12\\14 .

80

.\‘.,/"

12.2. \document 81

(As we will see in section 25.3, we will be able to extract information from
\fnpages@ in an extremely efficient way.) For this purpose, we will be using

\def\Finit@#1#2\Finit@{\let\nextii@=#1\def\nextiiio{#2}}

so that \Finit@...\Finit@ will \1et\nextii@ be the first token in ‘...’
and define \nextiii@ to be the remainder. (Since \Finit@ will always be
applied to a line we read in from the . lax file, \nextii@ will always be either
For @)

At this point, lamstex . tex changes ~ to a letter, and introduces the routine
\getparts@:

\catcode‘\"=11

\def\getparts@ ek1-#2-#3"#4-#5"#6{\def\nextive{#1}Y%
\def\nextiiie{#2"#3"#4"#5"}\count@=i6\relax}

Thus, when applied to something of the form
@(label) "V~ V3" V3~ V4~ (type indicator)

\getparts@ stores (label) in \nextiv@ and V;"Vy"V3~V,~ in \nextiiie,
and sets \count@ to the value of {type indicator).

12.2. \document. As in ApS-TEX, \document first defines \fontlist®@ to
be empty. It then opens the file \jobname.lax for reading. It processes the
contents of this file one line at a time, reading each line into \next@. This is
done with a \1loop, where we \repeat until \ifeof detects the end of the
file (see section 3.9).

First we will see if \next@ is a special line starting with F by using the test

\expandafter\Finit@\next@\Finit@
\ifx\nextii@ F

If this test is true, then \next@ is ‘F{number), and \nextiii@ has been
defined to be the (number). We want to add ‘\\(number)’ to \fnpagesQ,

\expandafter\rightadd@\nextiii@\to\fnpages@

82 Chapter 12. Beginning the document

If the test is false, so that \next@ is not one of the special lines for fancy
footnote numbering, then it will be of the form

(label) " V"V V3~ V" (type indicator)
and we want to make the appropriate definition
\def ‘\(label)@L’ {V;" V3~ V3“ V4~ (type indicator)}
To do this we use
\expandafter\getparts@\next@
and then
\edef\next@{\gdef\csname\nextive @L\endcsname
{\nextiii@\number\count@}

\next@

Here the \edef makes \next@ mean

[\gdet || \(label)eL V1" V5" V5"V~ |(type indicator)}

The control sequence ‘\(label)@L’ is not expanded further because it has been
made equal to \relax. As noted on page 71, any control sequences appearing
in \next@ should be ones whose expansion is inhibited by \noexpands@; so
V17 Vy"V37V,” will not be expanded further, because we will be doing all this
within a group with \noexpands@. In addition, as we mentioned on page 76,
we will want to make @ and ~ have category code 11 within this group. Finally,
we will set

\endlinechar=-1

within this group, so that \next@ will not contribute a blank space at the end
because of the (carriage-return) at the end of the line.

There is one further detail that we have to worry about. Many files, espe-
cially files that have been written by TEX itself, have a (carriage-return) at the

12.2. \document 83

end. In this case, the last \next@ before the end of the file will be empty (f
we hadn’t set \endlinechar=-1 it would be \par). Consequently,

\expandafter\Finit@\next@\Finite
and

\expandafter\getparts@\next@

would give error messages. So, before any of our tests, we will first make sure
that \next@ isn’t empty.

After having read \jobname.lax, and thus obtaining all the information
form the last run of the file, we re-open the file, to record information pro-
duced with this run:

\def\document{\let\fontlist@=\empty
\immediate\openin\laxread@=\jobname.lax\relax
{\endlinechar=-1 \noexpands@

\catcode‘\@=11 \catcode‘\"=11
\loop \ifeof\laxread@ \else
\read\laxread@ to\next@
\ifx\next@\empty
\else
\expandafter\Finit@\next@\Finit@
\ifx\nextii@ F¥
\expandafter\rightadd@\nextiii@\to\fnpages®@
\else
\expandafter\getparts@\next@
\edef\next@{\gdef\csname\nextive@ @L\endcsname
{\nextiii@\number\counte}}/,
\next@
\fi
\fi
\repeat},
\immediate\closein\laxread@
\immediate\openout\laxwrite@=\jobname.lax\relax}

Chapter 13. Labels

13.1. \label. We begin by setting

\let\thelabel@=\relax

(see pages 70 and 76). Since the combination
\thelabel@ “\thelabel@@ “\thelabel@@Q@ “\thelabel@@ee ~

occurs several times in our constructions, it will save time and space to intro-
duce an abbreviation for it:

\def\thelabels@{\thelabel@ ~\thelabel@@® ~\thelabel@@@
“\thelabel@@ee ~}

The definition of \1abel#1 begins with \prevanish@, since \1label’s are
supposed to be invisible, and then gives an error message if \thelabel@ is
\relax, so that we are not in a construction that allows \1label’s. Otherwise
we first use the test

\expandafter\ifx\csname#1@L\endcsname\relax

which is true precisely when #1 has not already been used as a (label). In this
case, we simply use

\expandafter\xdef\csname#1Q@L\endcsname{\thelabels@0}
\immediate\write\laxwrite@{@#1~\thelabels@1}

to define ‘\#1@L’ and to write to the .1lax file. Of course, this must be done
within a group with \noexpands@.

If #1 has already been used as a (label), then we need to look at the (type
indicator) of ‘\#1@L’. To do this we use

\edef\next@{@" \csname#1QL\endcsname}
\expandafter\getparts@\next@

84

\ e

13.1. \1label 85

so that \count@ will have the value of (type indicator). We need the
\edef\next@ so that \next@ will contain the actual value that the control
sequence \csname#1@L\endcsname expands out to; naturally, we also need
to perform this step in a group with \noexpandsa@.

If, as a result of our test, \count@ is even, we issue an error message that
label #1 has already been used. Otherwise, we simply use

\expandafter\xdef\csname#1@L\endcsname{\thelabels@0}
\immediate\write\laxwrite@{@#1~\thelabels@1}

to define the control sequence and write to the .lax file:

\def\label#i{\prevanish@
\ifx\thelabel@\relax
\Err@{There’s nothing here to be labelled}},
\else
{\noexpands@
\expandafter\ifx\csname#1@L\endcsname\relax
\expandafter\xdef\csname#10L\endcsname{\thelabels@0}¥
\immediate\write\laxwrite@{0#1~\thelabels@1}}
\else
\edef\next@{@"\csname#10L\endcsname},
\expandafter\getparts@\nextQ
\ifodd\count@
\expandafter\xdef\csname#1@L\endcsname{\thelabels@0}/,
\immediate\write\laxwrite@{@#1~\thelabels@1},
\else
\Err@{Label #1 already used}}
\fi
\fi
)
\fi
\postvanish@}

For simplicity, we used a single group to enclose all the constructions that
require a \noexpands@.

Finally, having defined \1abel we now

86 Chapter 13. Labels

\rightadd@\label\to\vanishlist@

13.2. \pagelabel. There are several differences between the definition of
\pagelabel and that of \label.

(1) First of all, we don’t have to check the value of \thelabel@®, since
\pagelabel is allowed anywhere.

(2) Instead of \thelabel@, ..., \thelabel@@@Q, which are defined by
constructions that can be given a (label), we use the values we want for a page
label. Again, it will save time and space to introduce an abbreviation:

\def\thepages@{\page@N{\number\page@C}-¥
\page@S{\page@P\pageON{\number\page@C}\page@q}-Y%
\number\page@C ~\page@P\pageON{\number\page@C}\pageeq “}

(As with \thelabels@, we will be using \thepagesQ within a group where
we have stated \noexpandsa@.)
(8) Instead of an \immediate\write\laxwrite@, we must use a (delayed)

\write\laxwrite@. This is necessary to be sure of getting the proper value
of \page@C into the .1lax file.

When we encounter a \pagelabel#1i, we again first use the test

\expandafter\ifx\csname#1@L\endcsname\relax

which is true if #1 has not already been used as a (label); in this case, we simply
use

\expandafter\def\csname#1QL\endcsname{\thepages@2}
\write\laxwrite@{@#1~\thepages@3}

If the test is not true, we again need to look at the type indicator with

\edef\next@{@"\csname#1@L\endcsname}
\expandafter\getparts@\nextQ

13.2. \pagelabel 87

If this test sets \count@ to be even, we issue an error message. But if \count@
is odd we always '

\write\laxwrite@{@#1~\thepages@@3}

moreover, we also

\expandafter\xdef\csname#1@L\endcsname{\thelabels@2}

if \count@ is 1 (but not if it is 3):

\def\pagelabel#i{\prevanish@
\expandafter\ifx\csname#1@L\endcsname\relax
{\noexpands@
\expandafter\xdef\csname#1@L\endcsname{\thepages02}}4
\write\laxwrite@{@#1~\thepages03},
\else
{\noexpands@
\edef\next@{@~\csname#1@L\endcsnamel}’,
\expandafter\getparts@\nextQ
\ifodd\counte@
\ifnum\count@=1
\expandafter\xdef\csname#10L\endcsname{\thelabels@2}Y,
\fi
\write\laxwrite@{@#1~\thepages03}},
\else
\Err@{Label #1 already used},
\fi
Y
\fi
\postvanish@}

For simplicity, we have again used a single group for all constructions that
require the \noexpands@. The \write happens to appear in this group, but
as before (page 58), that is irrelevant, since the \write only happens during
a \shipout.

Finally, we add \pagelabel to \vanishliste:

88 Chapter 13. Labels

\rightadd@\pagelabel\to\vanishlist@

Page 39 of the MyS-TEX Manual mentions that for a counter, say
‘\somecounter’, we want to allow such things as

\pagelabel{thispage\number\somecounter}

In version 1 of I\S-TEX, special manipulations were required for this, but
now both \label and \pagelabel automatically allow this, because in both
cases the argument #1 is expanded out in all parts of the definition.

N L

Chapter 14. Cross-Referencing

14.1. Preliminaries. We need a flag \ifreferr@ to tell whether we want error
messages or merely warning messages when a (label) #1 for a \ref isn’t found:

\newif\ifreferr@

\referr@true
\def\RefErrors{\global\referr@true}
\def\RefWarnings{\global\referr@false}

And we want to define a routine that prints either the desired error message
or the desired warning message. For TEX version 2, the best we can do is the
following, where \W@ from AyS-TEX stands for ‘\immediate\writel6 ’:

\ifreferr@\Err@{No \noexpand\label found for #i}\else
\We{Warning: No \noexpand\label found for #1.}\fi}

(As before, compare section 3.4 for the use of \noexpand.)
But in TEX version 3, we can mimic an error message more closely by print-
ing the line number after the warning, using \inputlineno:

\We{Warning: No \noexpand\label found for #1.}

\We{l.\number\inputlineno\space ... #1}
(We have to settle for ‘. . .” since we can't actually capture the contents of the
input line.)

It looks even better to print something like
1.3 ... \ref{#1}
when a (label) for \ref isn’t found, and

1.3 ... \Ref{#1}

when a (label) for \Ref isn’t found, etc. So we will actually be creating a
control sequence with two arguments, the first corresponding to the \ref or

89

90 Chapter 14. Cross-Referencing

\Ref, and the second to the (label), so that we will print

\We{Warning: No \noexpand\label found for #2.}
\We{l.\number\inputlineno\space ... \string#i{#2}}

Since we can’t be sure when people will be switching to version 3, it seems
best to use different code for the two versions. We can check for the version
of TEX with

\setbox0=\hbox{\global\count@=*""30} (here 0 is ‘zero’, not ‘oh’)

In TEX version 3, \count®@ will then have the value 48, but in TEX version 2, it
will have the value 115 (and \box0 will also contain the character 0). Instead
of running this test each time we have to print a warning, we will simply let
‘\versionthree® be undefined in version 2 and \relax in version 3:

\setbox0=\hbox{\global\count@=‘""30}
\ifnum\count@=48 \let\versionthree®=\relax\fi

Then we can use a message of the form

\ifreferr@\Err@{No \noexpand\label found for #2}\else
\We{Warning: No \noexpand\label found for #2.})
\ifx\versionthree@\relax
\We{l.\number\inputlineno\space ... \string#1{#2}}\fi
\fi

(The \global\count@ assignment here doesn’t really contradict the policy
of section 1.3 because this \global assignment is made just once, at the top
level, not within a macro.)

o : E The simpler looking test

\setbox0=\hbox{\global\count@=*"~00}

has all sorts of insidious complications, because in version 3 of TgX, ~~00 stands for
the ASCII RUL, which is usually an ignored character in TEX! Since *30 is the code
for the number 0, it is unlikely to be special.

S

14.2. \ref and its relatives 91

14.2. \ref and its relatives. For \ref#1 we simply have to use the test

\expandafter\ifx\csname#1@L\endcsname\relax

to check whether #1 is a label, and then pick out the relevant portion of the
value of \csname#1@L\endcsname.

With this in mind, we might first define \nolabel@ by

\def\nolabel@#1#2{\expandafter\ifx\csname#20L\endcsname\relax

\ifreferr@\Err@{No \noexpand\label found for #2}\else
\We{Warning: No \noexpand\label found for #2.}
\ifx\versionthree@\relax

\We{l.\number\inputlineno\space ... \string#1{#2}}\fi

\fi

\else}

so that \nolabel@#1#2 would give an error or warning message if #2 hasn’t
been used as a label, and otherwise do whatever follows. However, it will
be a little more convenient to define \nolabel@#1#2#3, with an extra argu-
ment, #3, that is often given the value \relax:

\def\nolabel@#1#2#3{}
\expandafter\ifx\csname#20L\endcsname\relax
\ifreferr@\Err@{No \noexpand\label found for #2}\else
\We{Warning: No \noexpand\label found for #2.}%
\ifx\versionthree@\relax
\We{l.\number\inputlineno\space ... \string#i{#2}}\fi
\fi
#3\else}

We also want a routine that sets a scratch token to the actual value of the
control sequence \csname#1@L\endcsname; because this will have to be de-

fined within a group, we use the scratch token \Next@, reserved for \global
assignments (page 22):

\def\csLe#1{{\noexpands@\xdef\Next@{\csname#1@L\endcsname}}}

92 Chapter 14. Cross-Referencing

Now \ref#1 should print an error or warning message if #1 is not a (label),
\def\ref#1{\nolabel@\ref{#1}\relax
Otherwise, it should print everything up to the first © in the value of the
control sequence \csname#1@L\endcsname. If we define
\def\nextii@#1~#2\nextii@{#1}
and also use
\csLe{#1}

to set \Next@ to the value of \csname#1@L\endcsname, then we just have to
use

\expandafter\nextii@\NextQ@\nextii@

So the definition of \ref is

\def\ref#i{\nolabel@\ref{#i1}\relax
\def\nextiio#i#1~##2\nextiie{#t#1}Y
\csLe{#1}\expandafter\nextii@\Next@\nextii@\fi}

Similarly for

\def\Ref#1{\nolabel@\Ref{#1}\relax
\def\nextiiQ##1~##2"##3\nextiio{##2}
\csLe{#1}\expandafter\nextii@\NextQ@\nextii@\fi}

and

\def\nref#1{\nolabel@\nref{#1}\relax
\def\nextii@##1~##2"##3" ##4\nextiie{##3}}
\csL@{#1}\expandafter\nextii@\Next@\nextii@\fi}

14.2. \ref and its relatives 93

and

\def\pref#i{\nolabel@\pref{#1}\relax
\def\nextiiO##1~##2 ##3"##4~ ##5\nexviie{##4}Y,
\csLe{#1}\expandafter\nextii@\Next@\nextii@\fi}

For later purposes, we will

\let\pref@=\pref

so that \pref@ may be used to reinstate the usual meaning of \pref if it has
been redefined.

The definition of \Evaluatenref is somewhat different—we use the gen-
erality built into \nolabel@ to \gdef\Nref{-10000 } when #1 isn’t a label:

\def\Evaluatenref#1{}
\nolabel@\Evaluatenref{#1}{\gdef\Nref{-10000 }}%
\def\nextii@it#1~##2"##3"##4~ \nextii@{\def\nextiie{##3}}
\csLe{#1}\expandafter\nextii@\Next@\nextii@
\xdef\Nref{\nextii@}\fi}

\Evaluatepref is analogous:

\def\Evaluatepref#1i{}
\nolabel@\Evaluatepref{#1}{\global\let\Pref=\empty}’
\def\nextii@##1~##2"##3”##4 ##5\nextiie{\def\nextiiQ{##4}1},
\csL@{#1}\expandafter\nextii@\Next@\nextii@
\xdef\Pref{\nextii@}\fi}

Note that the (label) is expanded out in both \nolabel@ and \csL@. Con-
sequently (compare page 88), \Evaluatenref and \Evaluatepref can have
arguments containing \number\somecounter for a counter ‘\somecounter’;
in fact, even \ref, \Ref, \pref and \nref can contain such arguments.

Applications of \Evaluatenref and \Evaluatepref are given on pages 38-39

of the I4(S-TEX Manual. ‘\Evaluateref’ and ‘\EvaluateRef’ haven't been
provided, on the grounds that in similar situations one would be able to determine the
value of \ref from that of \nref, and the value of \Ref from that of \pref.

Chapter 15. Reading auxiliary files

Although \readlax is similar to \document, there are a few significant dif-
ferences.

I5.1. \readlax. \readlax#1 first opens the file #1.1lax for reading, giving
a conspicuous message if the file isn’t found, ie., if the test \ifeof is true at
the beginning. (Note that \document doesn’t give a message if \ jobname.lax
isn’'t found.) Like \document, it then processes the contents of this file one line
at a time, except that it will read the line into the control sequence \nextve.
Again, this is done with a \1oop that repeats until \ifeof detects the end of
the file.

As with \document, we want to ignore the case where \nextv@ is empty.
Now, however, we also want to ignore the lines beginning with F, because
information about the numbering of footnotes from another file would conflict
with information gathered for the current file.

So the definition of \readlax#1 begins

\def\readlax#i{\immediate\openin\laxread@=#1.lax\relax
\ifeof\laxread@\We{}\We{File #1.lax not found.}\We{}\fi
{\endlinechar=-1 \noexpands@

\catcode‘\@=11 \catcode‘\"=11
\loop \ifeof\laxread@ \else
\read\laxread@ to\nextve
\ifx\nextve@\empty
\else
\expandafter\Finit@\nextve@\Finit@
\ifx\nextiie FY
\else

When a suitable line \nextv@ has been found, we use
\expandafter\getparts@\nextve
to stores the (label) part of \nextv@ in \nextiii@, the value of the (type
indicator) in the counter \count@, and the rest of \nextve, except for the

initial *, in \nextiiie.

94

. -

15.1. \readlax 95

Then we have to use the test

\expandafter\ifx\csname\nextiv@ @L\endcsname\relax

to see if the (label) part of \nextv@ has already been used, because this rep-
resents a conflicting use of (label), so that we need to issue an error message
(remember that \readlax can be used at any time, possibly after some (label)’s
have already been made).

If this test is true, so that the (label) does not appear, we will define
‘\(label)@L’ to be the remainder of \nextve, excep: that we will change the (type
indicator) to 0 if it is 1 and to 2 if it is 3. For this we can use

\edef\next@{\gdef\csname\nextive @L\endcsname
{\nextiii@\ifnum\count@=1 O\else 2\fi}}
\next@

(within a group with \noexpands@).

As a consequence of this arrangement, any (label) from the auxiliary file
that we read in with \readlax will count as a “current” label, so that if
\label{(label)} occurs later in the file we will get an error message, rather
than changing the data for this (label). That seems like the reasonable arrange-
ment, since we use \readlax to get information from what is presumably a
different part of the same document, and the same \label{(label)} shouldn’t
appear in two different parts of the document (at least, not if we intend to
combine the labels in the two parts with \readlax).

Our whole definition is

\def\readlax#i{\immediate\openin\laxread@=#1.lax\relax
\ifeof\laxread@\We{}\We{File #1.lax not found.}\We{}\fi
{\endlinechar=-1 \noexpands@

\catcode‘\@=11 \catcode‘\"=11

\loop \ifeof\laxread@ \else

\read\laxread@ to\nextve

\ifx\nextvo\empty

\else
\expandafter\Finit@\nextve\Finit@
\ifx\nextii@ F%

96 Chapter 15. Reading auxiliary files

\else
\expandafter\getparts@\nextve
\expandafter\ifx\csname\nextiv@ OL\endcsname\relax
\edef\next@{\gdef\csname\nextiv@ QL\endcsname
{\nextiii@\ifnum\count@=1 O\else 2\fi}}V
\next@
\else
\Err@{Label \nextiv@\space in #1.lax already used}}
\fi
\fi
\fi
\repeat}y,
\immediate\closein\laxread@}

At this point we are finished with all definitions that involve ~ with category
code 11:

\catcode‘\"=\active

15.2. Style files. Control sequences to read in style files are simple:

\def\docstyle#i{\input #1.st\relax}
\def\predocstyle#i{\input #1i.stf\relax}
\def\postdocstyle#i{\input #1.stb\relax}

B -

Part III

Particular
Constructions
Allowing Labels

and their associates

Chapter 16. Displayed formulas

The next part of I4yS-TEX is concerned with displayed formulas and the \tag
mechanism; it js the first place where we define \thelabel@ However,
numerous special considerations for \tag are also required, and sections 2
and 3 are the only ones specifically related to the \1abel mechanism.

16.1. Invisibility. An “invisible” construction following a display, in a case like

$$

$$\1label{. ..} more text
or even

$$
$5i§u§1a;.bel{. . .JLmore text

presents the same problem as an invisible construction following \noindent
(section 7.2): The \prevanish@ sets \saveskip@ to Opt (even in the sec-
ond case, because TEX ignores a space after the $$ that end a display).
Consequently, the \postvanish@ does not skip the space following the
\label{...}, and we end up with an extra space before ‘more text’.

There doesn’t seem to be any correction that we can add to \prevanish@
to address this problem, because there is apparently no way to tell when a TEX
construction happens to appear immediately after a display. To get around this
problem, whenever I4S-TEX encounters the $$ that begin a display, it calls a
control sequence that reads in everything up to the closing $$ as its argument,
and then puts back both this argument and the closing $$, together with the
proper compensating mechanism:

\everydisplay{\csname displaymath \endcsname}
\expandafter\def\csname displaymath \endcsname#1$${%
#1$$\FNSS@\pretendspace@}

Note that here we need \FNSS@ (section 3.8), not just \futurelet\next,
since we have to skip over any space after the final $$.

99

100 Chapter 16. Displayed formulas

We will introduce the abbreviation

\def\FNSSP@{\FNSS@\pretendspace@}

not only because it will save numerous tokens, but also because at one point
(section 25.2), it will be essential to have it. So we use

\everydisplay{\csname displaymath \endcsname}
\expandafter\def\csname displaymath \endcsname#1$${
#1$$\FNSsPe}

a : E The control sequence

\csname displaymath \endcsname

(compare \csname align \endcsname etc., as explained in amstex.doc) shows up
on the screen as

\displaymath,
so if a blank line occurs before the closing $$, we will get the error message

! Paragraph ended before \displaymathy, was complete.

[If we defined ‘\displaymath,/ to be \long, we would get basically the same error
message that TEX normally gives,

! Missing $ inserted.

but it would be presented in a much more confusing way, since “context lines”, involv-
ing the argument of ‘\displaymath,/’, would also be presented.]

a ! : !j Notice that a construction like

$. . .$%
\bye

16.1. Invisibility 101

will eventually \1et\next=\bye and then call \pretendspace®, which uses the test
\ismember@\vanishlist@\next. If \bye were \outer we would get an error mes-
sage

! Forbidden control sequence found while scanning use of \ismemberQq.

Unlike the situation for \noindent (section 7.2), which is presumably used only
when some text is going to follow, if we have something like

A line of text.
$$

$$
\label{...}

Another line of text.

the \hskip-1pt\hskipipt added by the \prevanish@ in \label will have a dire
effect: it will cause a blank line to be typeset after the display. Since there will be
\baselineskip glue before this blank line, the next line, ‘Another line of text.’ will
be separated from the display by too much space.

But there’s really nothing that can be done about this. Even in plain TEX,

A line of text.
$$

$$
\writen{...}

Another line of text.

will create a spurious blank line after the display. So users just have to be warned
against using “invisible” constructions after a display that ends a paragraph.

Because of this (admittedly convoluted) approach to this (admittedly rather
special) problem, constructions that change category codes won’t work within
a displayed formula. If that needs to be allowed (as it sometimes was for the
14\S-TEX Manual), one can

\def\Math{\begingroup\everydisplay{}$$}
\def\endMath{$$\endgroup\futurelet\next\pretendspace@}

102 Chapter 16. Displayed formulas

and then use \Math. . .\endMath instead of $$. . . $$. (We don’t need \FNSS@
here, since there won’t be a space token after the control sequence \endMath.)

Some people, of course, might argue that this is really the “logical” way
to do things anyway. If such a definition were to be instituted permanently,
then the basic ArS-TEX definition of \tag (see (A) below) would have to be
changed, so that the argument of \tag is delimited by \endMath rather than
by $$. (When the IS-TEX Manual required literal mode in a displayed
formula with a \tag, the literal mode material was first set in a box, which
was then used within the usual $$. . .\tag$$ construction.) It should also be
noted that the AyS-TEX construction \align....\endalign must read in

. as an argument, in which case category code changes within . .. will still
be ignored. The same is true of the M\S-TEX \CD. . .\endCD construction.
So, all in all, \Math. . \endMath should be reserved for special effects.

There is a way of allowing category changes within a display $$. . . $$ if we are
willing to change the category code of § itself:

\let\dollar@=$
\newif\ifindisplay@
\catcode‘\$=\active
\def${\futurelet\next\dollaree}
\def\dollaree{’
\ifx\next$%
\ifindisplay@
\def\next@${\dollare\dollar@\FNSSPQ}Y
\else
\def\next@${\dollar@\dollar@\indisplay@truel’
\fi
\else
\let\next@=\dollar®@
\fi
\nextQ}

(We never need toset \indisplay@false, since our \indisplay@true occurs within
the display, which TEX implicitly encloses within a group.)

I wanted to avoid additional category changes as much as possible, but perhaps this
approach is really preferable.

If such definitions were made, we would also have to restate any definitions that
involved § as part of their syntax. For example, we would have to restate ApS-TEX’s

N -

g

16.1. Invisibility 103

definition of \tag,

\def\tag#1$${\iftagsleft@\leqno\else\eqno\fi

(A) \maektag@#1i\maketag$$}

at some point after $ has been made active.

It would naturally also be sensible to replace any §. . . $ combinations in macros by
\dollar@...\dollar@ (many such appear in the ApS-TEX macros, or their replace-
ments in I4yS-TEX, e.g., those in sections 4 and 5).

But a § in an \xdef (e.g., as on page 106) would instead have to be replaced by
\noexpand$. Moreover, we would have to add ‘\let$=\relax’ to \noexpandtoks®@
(or, equivalently, state \Nonexpanding$).

One advantage of this approach, by the way, is that one could modify the definition
of \dollar@e@ to be:

\def\dollaree{y,
\ifx\next$%

\else
\ifhmode
\def\next@{\saveskip@=\lastskip\unskip\/%
\ifdim\saveskip@>Opt \hskip\saveskip@\fi\dollar@}Y,
\else
\let\next@=\dollare
\fi
\fi
\next@}

With such a definition, something like
(1) If $1x[<3$, then ...
would be treated as if it had been typed

(2) If\/ $Ix|<3$, then .

(On the other hand, input (2) would remain as is, since \/ has no effect except after a
character or ligature.)

This arrangement is quite useful if the current font is slanted or italic, as in the
statement of a \claim, because

104 Chapter 16. Displayed formulas

Iflz| <3, then ...
looks much better if the italic correction is added:
If || <3, then ...

(See page 185 for other examples where the italic correction seems called for.) I used
this approach in the style file for the Publish or Perish Mathematics Lecture Series.

As far as I can tell, there is no other way of achieving this: \everymath doesn’t do
any good, because a $ puts a ‘\mathon’ on the horizontal list, and one can’t remove it,
in order to \unskip.

16.2. Localizing labels. As already mentioned in section 11.1, IyS-TEX uses
\thelabely, ..., for the values of \ref, ..., \pref associated to a (label),
and any I4uS-TEX construction that can be given a (label) must define
these control sequences. It turns out that these four components will always
have to be defined globally, because they have to be made within a group
beginning with \noexpands@—compare page 71—even though we want
\thelabelq, ..., to be defined only locally. So I4\S-TEX uses \Thelabelg,
--+» \Thelabel@@QQ for the four components that it defines globally, and
then uses the constructions

\let\thelabel@=\Thelabelg, ...

to create locally defined ones. Since this is used so often, we abbreviate it:

\def\locallabel@{\let\thelabel@=\Thelabel®
\let\thelabel@@=\Thelabel@@\let\thelabel@@@=\Thelabel@QQ
\let\thelabel@@@@=\Thelabel@@QQ}

16.3. \tag. We introduce the counter \tagQC for \tag, and the initial values
for the other associated things for labelling:

\newcount\tageC

\tag@C=0

\let\tag@P=\empty
\let\tag@Q=\empty
\def\tages#1{{\rm(F#1\/{\rm)}}
\let\tag@N=\arabic
\def\tagF{\rm}

16.3. \tag 105

As in the case of \page@F (page 51), we use \def\tag@F{\rm} rather than
\let\tag@F=\rm, so that \fontstyle\tag will work correctly. In \tages
we specified roman parentheses even if \tag@F is changed (compare page 74);
of course, \tag@s could be changed if we didn’t want this.

Unlike the situation for \page@N, we can \let\tag@N=\arabic, because
\tag@N appears only in certain \xdef’s (page 106), and then this value of
\tag@N will simply disappear, resulting in a shorter string than if we kept
\arabic unexpanded.

NOTE: Nevertheless, we must use \def instead of \1et for other numbering
styles. Note that \newnumstyle does this (Chapter 24).

AmS-TEX already defines the combination \tag#1$$ to be \legno or
\egno followed by \maketag@#1i\maketag$$, and we just have to redefine
\maketag@ for I4S-TEX, although the argument #1 will now have a rather
different significance: in A\S-TEX, #1 would be the tag number that we want
to use, but now #1 could instead involve things like \1abel or \pagelabel, or
even \Reset\tag (to affect the next \tag), as well as a “quoted” tag number
"...", again followed by things like \1label or \pagelabel.

The action of \maketag@ will depend on whether or not it is followed by a
" for a “quoted” \tag.

\def\maketag@{\futurelet\next\maketagee}

However, for reasons that will be explained in section 4, if \maketagQ is fol-
lowed by \relax"..." we will want to get the same result as if it were followed
simply by "'...". So we will call \maketag@@Q@ if \maketag@ is followed by "
and \maketag@@@Q if it is followed by anything else other than \relax. But
if \maketag@ is followed by \relax, we call a control sequence that swallows
this \relax and then reiterates the process:

\def\maketag@@{\ifx\next\relax
\def\next@\relax{\futurelet\next\maketag@@}\else
\ifx\next"\let\next0=\maketag@@@\else
\let\next@=\maketag@@@Q\fi\fi\next@}

The definition of \maketag@@@@ (when \tag is not followed by a ") illus-
trates the general scheme by which S-TEX deals with labels.

106 Chapter 16. Displayed formulas

(1) First we globally advance the \tag counter, \tag@C, by one.

(2) Then we \xdef the values of \ThelabelQ@, ..., \Thelabel@QQQ ap-
propriately, using the current values of \tag@C, \tag@P, etc.

(8) Then we use \locallabel@ to (locally) set the values of \thelabele,
..., \thelabel@@eQ.

(4) Then we actually typeset the tag, using \tag@s for the style, and in the
font \tag@F (which will be irrelevant if we have \TagsAsMath).

In step 2 we will be doing something like

{\noexpands@
\xdef\Thelabel@QQ{\number\tagQC}
\xdef\Thelabel@{\tag@N{\Thelabelee@}}
\xdef\Thelabel@@@@e{\ifmathtags0$\tagOP\Thelabel@\tageQ$\else
\tag@P\Thelabel@\tageQ\fi}
\xdef\Thelabel@e{\tag@S{\Thelabel@@@Q}}
}

All of the I4S-TEX constructions that can be given a (label) will define
\Thelabel@, ..., \Thelabel@@@@ in much the same way (with \tag@C re-
placed by the suitable \. . .@C counter, etc.). Consequently, it is worth intro-
ducing an abbreviation for the steps defining \Thelabel@ and \Thelabel@@:

\def\xdefThelabel@#1{\xdef\Thelabel@{#1{\Thelabel@@e}}}
\def\xdefThelabel@@#1{\xdef\Thelabel@@{#1{\Thelabel@ee@}}}

Thus, we define \maketag@@@@ by

\def\maketag@@ee#1\maketag@{\global\advance\tageC by 1

{\noexpands@
\xdef\Thelabel@@@{\number\tageC}
\xdefThelabel@\tagoN
\xdef\Thelabel@@0Q{\ifmathtags@
$\tag@P\Thelabel@\tageQ$\else
\tag@P\Thelabel@\tag@Q\£il}},
\xdefThelabel@0\tag@S

Y

g

16.3. \tag 107

\locallabel@
\hbox{\tag@F\thelabel@@}},
#1}

When \tag is followed by ", it might occur in constructions like

\tag "\style{...}" or \tag "\style{\pre 3}" etc,

involving any of \pre, \post, \style, or \numstyle. In such situations,
\pre must be interpreted as \tag@P, etc., when the tag is printed,

{\let\pre=\taglP \let\post=\tageQ
\let\style=\tag@S \let\numstyle=\tagON
\hbox{\tag@F...}

Moreover, \Thelabelg, ..., \Thelabel@@@@ must be suitably interpreted.
For this we use a routine that is also used by many other constructions:

\def\Qlabel@#1{{\noexpands@\xdef\Thelabel@a{#1}%
\let\style=\empty\xdef\Thelabel@QQ@{#1}¥
\let\pre=\empty\let\post=\empty\xdef\Thelabel@{#1}¥
\let\numstyle=\empty\xdef\Thelabel@@Q{#1}}}

For example, \Qlabel@{#1} for \tag"#1" will be used after we have
\let\pre=\tag@P, etc. So

(1) \Thelabel@@ (which is what \Ref is supposed to produce), will give
#1, with \pre interpreted as \tag@P, etc.

(2) \Thelabel@@@Q (what \pref is supposed to produce), will be the same,
except \style will be ignored if it appears, since \pref is supposed to
produce what \Ref produces, but without any of the \style format-
ting.

(8) \Thelabel@ (what \ref is supposed to produce), also ignores \pre
and \post if they appear.

(4) \Thelabel@@@ (what \nref is supposed to produce), also ignores
\numstyle if it appears.

108 Chapter 16. Displayed formulas

\def\maketag@0Q"#1"#2\maketag@{}
{\let\pre=\tag@P \let\post=\tageq
\let\style=\tag@S \let\numstyle=\tag@N
\hbox{\tag@F#1i}/,
\noexpands@
\Qlabelo{#1}},
1Y)
\locallabel@
#2}

It might seem unlikely that any one would use a \1abel for a “quoted” \tag, since
then the tag is already known. But the label mechanism is provided nevertheless,
and might even be of some use. For example,

$$... \tag"\style{\pre A}" \label{tagA}$$

might be used to produce the tag ‘(3.AY, where the user wouldn’t know what precedes
the ‘A" In this case, \Ref{tagA} or \pref{tagA} would be needed to print ‘(3.A)’ or
‘3.A in the text,

Because of the \xdef’s in \Qlabel, any “quoted” number ". . ." following \tag
(or any other construction that allows a {label)) must contain only things that can
safely be used in \xdef’s when \noexpands@ is in force.
As a far-fetched example, in this manual Chapter 11 was labelled ‘STARTLABEL’ and
Chapter 15 was labelled ‘ENDLABEL’. If the next chapter were commentary on these
chapters, and for some reason we wanted this commentary to be called

Chapter 11'-15'. Remarks on Labels and Cross References

we wouldn’t be able to type

\chapter "\nref{STARTLABEL}$’$--\nref{ENDLABEL}$’$" Remarks ...

Instead, we would have to use something like

\Evaluatenref{STARTLABEL}

\edef\startlabel{\Nref}

\Evaluatenref{ENDLABEL}

\edef\endlabel{\Nref}

\chapter "\startlabel$’$--\endlabel$’$" Alternate ...

.\\‘//

16.4. \align 109

In such a case, we might even use a \label with this “quoted” number,

\chapter "..." . . . \label{...} \endchapter
in order to refer to this new chapter later on.

16.4. \align. This section presumes familiarity with ApS-TEX’s \align con-
struction (see amstex.doc). Before considering this construction in detail, we
need to consider one aspect of the general scheme.

When ApS-TEX sees something like

\align
(formula;) & (formulag) \tag (formula number) \\

the \align is an \halign whose preamble contains three &’s, of the form

\halign{ ...#... & ...#... & ... \maketag@i\maketag® ... \cr

Within the \align, a \tag is simply interpreted as an &. But this means that
after a \tag, TeX will examine the next token, expanding if necessary, to see if
a \noalign or \omit follows (The TrXbook, page 240). So if

(formula;) & (formulag) \tag "..." \\

appears, the first " will already be expanded out to \futurelet\next\quote®@
before being submitted to \maketag@. Gonsequently, \maketag@ will think
that the next token is \futurelet, rather than "!

To get around this, we will instead have \tag interpreted as &\relax, to
insure that the " is not expanded out. Thus, \tag"..." will lead to

\maketag@\relax"..."\maketag@

and we have already arranged for this t give the same result as if the \relax
weren’t there (section 3).

The definition of \tag for \align is made by AyS-TEX’s control sequence
\align@, which is now redefined to include the \relax, together with other
changes that will be explained later.

110 Chapter 16. Displayed formulas

\def\align@{\inalign@true\inanyQ@true
\vspace@\allowdisplaybreak@\displaybreak@\intertext@
\def\tag{\global\tag@true\ifnum\and@=0

\def\next@{%\omit|[\global\rwidthe=0pt i \relax[}\else
\def\next@{& \relax [F\fi\nexte}}

\iftagsleft@\def\next@{\csname align \endcsname}\else

\def\next@{\csname align \space\endcsname}\fi\next@}

Sdll further changes to the rest of the AyS-TEX \align construction it-
self are also required, because the remainder of this construction first calls
\measure@ to measure all the formulas, before actually setting them. Even
in AyS-TEX, this can produce problems: if a user puts a constructed \box
within an \align, it will be emptied out by \measure@ and hence produce
nothing at all when the typesetting is done (this means that the user needs to
use \copy rather than \box).

In I4\S-TEX, the problem is that we want to ignore any \Reset\tag
and \Offset\tag constructions during the \measure®, since these globally
change the \tag counter, and we don’t want to do that twice (\Reset and
\0ffset are described in Chapter 24).

We introduce a special abbreviation for a more general construction that
disables \Offset and \Reset (but keeps them invisible):

\def\noset@{\def\Offset##1##2{\prevanish@\postvanish@}/,
\def\Reset##1##2{\prevanish@\postvanish@}}

Now we redefine \measure@ so that \noset@ is used:

\def\measure@#1\endalign{¥
\global\lwidth@=0pt \global\rwidthQ@=0pt
\global\maxlwidth@=0pt \global\maxrwidth@=0pt
\global\and@=0
\setbox0=\vbox

{\everycr{\noalign{\global\tag@false
\global\and@=0}}\Let@

v

164. \align 111

\halign{\setbox0=\hbox{$\meth\displaystyle{\@Lign#i#}$}%
\global\lwidth@=\wd0
\ifdim\lwidth@>\maxlwidth@ \global\maxlwidth@=\1lwidthQ\fi
\globalladvance\and@ by 1
&\setbox0=\hbox{$\moth\displaystyle{{}\@lign##}$}%
\global\rwidth@=\wd0
\ifdim\rwidth@>\maxrwidth@ \global\maxrwidth@=\rwidth@\fi
\globalladvance\and@ by 1
&\Tag@\eat@{##}\crcr#i\crer}}y,

\totwidth@=\maxlwidth@ \advance\totwidth@ by \maxrwidthe}

(Here \eat@ from ApS-TEX is defined by \def\eat@#1{}, see section 1.2.)
The assignments of \1wdith@, ... at the beginning of the definition don’t re-
ally have to be \global, but they do have to be \global later in the definition,
so we make them \global at all times (compare section 1.8).

Now, in the definition of ‘\align,/’ and ‘\align,,/ (called by \align),
after we \measure@ we can allow \Offset and \Reset to have their usual
meanings, but there is a different problem. When we have something like

(formula;) & (formulag) \Offset\tag0 \newpost\tag{$’$} \tag \\

the new values of \tag@C and \tag@P created by \0ffset and \newpost are
processed as part of (formulag) (since the & that ends this formula is supplied
by the \tag). But the new value of \tag@P is created only locally, so it will
not be known when \tag has to do its work. To get around this problem, we
need to pass such information through by means of two new globally defined
control sequences, \tag@P@ and \tag@Qe, and we make a special abbreviation
for this:

\def\prepost@{\global\let\tag@Pe=\tageP
\global\let\tag@Qe=\tageQl}

We also have an abbreviation for the construction that (locally) sets \tag@P
and \tag@Q to the globally defined \tag@PQ@ and \tageQe:

\def\reprepost@{\let\taglP=\taglP0\let\taglQ=\tagene}

112 Chapter 16. Displayed formulas

Now we redefine \align,, and \align,y, from ArS-TEX using \prepost@
within the formulas, and using \reprepost@ when the formula number is
being printed; note that we use \preposta@ at the end of each formula, so that
any \newpre or \newpost will have been discovered, but \reprepost@ at
the beginning of each formula number. (These maneuvers aren’t needed for
\measure@, since we simply \eat@ each formula number.)

First comes ‘\align, "

\expandafter\def\csname align \space\endcsname#1\endalign
{\measure@#1\endalign\global\and@=0
\ifingather@\everycr{\noalign{\global\and@=0}}\else

\displ@y@\fi

\Let@\tabskip\centering@

\halign to\displaywidth

{\hfil\strut@\setboxO=\hbox{$\m@th\displaystyle
{\elign##[\preposte}$}4

\box0 \globalladvance\and@ by 1

\tabskip\z@skip&
\setbox0=\hbox{$\m@th\displaystyle{{}\@lign##$}'/.
\global\rwidth@=\wdO

\box0 \hfil \globalladvance\and@ by 1
\tabskip\centering@ &
\setbox0=\hbox{\@lign\strut©
\maketag@i#t#\maketag@l}y,

\dimen@=\displaywidth \advance\dimen@ by -\totwidth@
\divide\dimen@ by 2 \advance\dimen@ by \maxrwidth@

\advance\dimen@ by -\rwidthe

\ifdim\dimen@<2\wd0
\1lap{\vtop{\normalbaselines\null\box0}}%
\else\llap{\boxO}\fi

\tabskip\zQskip

\crcriti\crcr

\black@\totwidth@}}

‘\~<~.<./ g

164. \align 113

Note that in a formula like
\align
(formula) \newpre\tag{a}\tag ... \\

where there is a line without any &, the definition of \tag in \align@
(page 110) means that this line will be interpreted as

(formula) \newpre\tag{a}% [\omit|[\global\rwidthe=0pt| &\relax
\reprepost@ \maketag@...\maketag@ \cr

The \prepost@ in the first part of the preamble for \align globally defines
\tag@PQ to be ‘a’, and the \reprepost@ then makes \tag@P properly defined
for \maketag@. But if the \omit were not inserted, then the \prepost@
for the second part of the preamble would globally redefine \tag@P@ to be
the default value of \tag@P, so that the new value would not be properly
propagated to the \maketag@ part of the preamble.

Since we’ve added the \omit, we also have to add \global\rwidth@=0pt,
which would normally be set by an empty formula. The extra clause

\ifdim\rwidth@> \maxrwidth@ \global\maxrwidth@=\rwidth@\fi

appearing in the definition of \measure@ doesn’t have to be duplicated, since
it would be inoperative for an empty formula.

The \tabskip\centering@ also appears after the first & in the preamble,
but we don’t have to worry about that: once the preamble has been read, the
various \tabskip glues are determined, and they remain the same for any
row, even those that have \omit’s in them.

(The ‘\global\advance\and@ by 1’ will also be omitted because of the
\omit, but this is irrelevant, since the current value of \and@ has already
been used to determine properly the meaning of \tag.)

The re-definition of ‘\align,/ is exactly analogous:

\expandafter\def\csname align \endcsname#1i\endalign
{\measure@#1\endalign\global\and@=0

114 Chapter 16. Displayed formulas

\ifdim\totwidth@>\displaywidth\let\displaywidth@=\totwidthe
\else\let\displaywidth@=\displaywidth\fi
\ifingather@\everycr{\noalign{\global\and@=0}}\else
\displ@y@\fi
\Let@\tabskip\centering@
\halign to\displaywidth
{\hfil\strut@\setbox0=\hbox{$\m@th\displaystyle
(ot ignedpropostah i)
\global\lwidth@=\wd0 \global\lineht@=\ht0
\box0 \globalladvance\and@ by 1
\tabskip\z@skip&\setbox0=\hbox{$\meth\displaystyle{{}\@lign
o \preposrah it
\ifdim\ht0>\1lineht@ \global\lineht@=\ht0 \fi
\box0 \hfil \globalladvance\and@ by 1
\tabskip\centering@ & \kern-\displaywidth@
\setbox0=\hbox{\@lign\strut@
\maketag@##\maketag@l}’,
\dimen@=\displaywidth \advance\dimen@ by -\totwidth@
\divide\dimen@ by 2 \advance\dimen@ by \maxlwidth@
\advance\dimen@ by -\1lwidthe
\ifdim\dimen@<2\wd0
\rlap{\vbox{\normalbaselines\box0 \vbox to\lineht@{}}}%
\else\rlap{\box0}\fi
\tabskip\displaywidth@\crcr#i\crcr
\black@\totwidth@}}

The extra clause
\ifdim\ht0>\1lineht@ \global\lineht@=\ht0 \fi

appearing in the second part of the preamble doesn’t have to be added to the
definition of \tag in \align@, along with the \omit, since it would always be
inoperative for a blank formula.

16.5. \alignat and \xalignat. This section presumes familiarity with 4xS-
TEX’s \alignat and \xalignat constructions, which also require changes
(no changes are required for \xxalignat, which doesn’t allow \tag’s).

16.5. \alignat and \xalignat 115

\alignat and \xalignat process their arguments twice, like \align, al-
though the initial processing provides much less information. In these con-
structions a \tag might even end up overlapping a formula, but at least a black
box is produced at the end, to indicate such overlapping (which is easy to miss
when proofreading). The initial processing is done with empty \tag’s, but as
if the \tag’s were set at their minimum distance from the formula (i.c., at a
distance equal to their widths), and the result is saved in \box\savealignat@.
During the second processing the only role played by this box is in the

\black@{\wd\savealignat@}

that is appended after the \halign, to give a black box if the whole construc-
tion turns out to be too wide.

Unlike the situation for \align, where we specify the preamble for the first
process in \measure®, the AyS-TEX routine \attagQ is used to produce
the preambles for both processes of \alignat and \xalignat, using a flag
\ifmeasuring@ to determine whether we are making a preamble for the first
process or for the second, as well as the flag \ifxat@ to determine whether
we are making preambles for \alignat or for \xalignat.

The definition of \attag@ from .4yS-TEX has to be modified in the same
way as the definitions of \measure@, ‘\align,’ and ‘\align,,/, by inserting
\prepost@ and \reprepost@ in the appropriate places:

\def\attag#i{\let\Maketag@=\maketag@\let\TAGE=\Tage
|\let\Preposte=\prepost@|\let\Repreposte=\repreposte I
\let\Tag@=\relax\let\maketag@=\relax
|\1et\prepost©=\re1§” \let\reprepost@=\relax |
\ifmeasuring@

\def\1lap@##1i{\setboxO=\hbox{##1}\hbox to2\wd0o{}}¥
\def\rlap@##i{\setbox0=\hbox{##1}\hbox to2\wd0{}}¥
\else\let\llap@=\1lap\let\rlap@=\rlap\fi
\toks@={\hfil\strute
$\m@th\disp1aystyle{\@1ign\the\hashtoks@$'/.
\tabskip\z@skip\global\advance\and@ by 1 &
$\m@th\displaystyle{{}\QIign\the\hashtoks@$\hfil
\ifxat@\tabskip\centering@\fi\globalladvance\and@ by 11}

e

116 Chapter 16. Displayed formulas

\iftagsleft@

\toks@@={\tabskip\centering0&\Tag@\kern-\displaywidth

\rlap@{\@lig
\maketag@\the\hashtoks@\maketag@}/,
\global\advance\and@ by 1 \tabskip\displaywidth}\else

\toks@@={\tabskip\centering@&\Tage

\llap@{\@li\maketagQ
\the\hashtoks@\maketag@}\global\advance\and@ by 1

\tabskip\z@skip}\fi
\atcount@#1i\relax\advance\atcount@ by -1
\loop\ifnum\atcount@>0
\toks@=\expandafter{\the\toks@&\hfil

$\moth\displaystyle{\@lign\the\hashtokse[\preposte[}$}

\globalladvance\and@ by 1 \tabskip\z@skipZ

$\meth\displaystyle{{}\@lign\the\hashtokse

Nerepostal $\ktia
\ifxat@\tabskip\centering@\fi\globalladvance\and@ by 1}

\advance\atcount@ by -1 .
\repeat >
\xdef\preamble@{\the\toks@\the\toks@e}}, 7
\xdef\preamble@0{\preamble@},

\let\maketag@=\Maketag@\let\Tag@=\TAG®
l\let\prepost@=\Prepost@”\1et\reprepost@=\Reprepost@D

Now we must modify the definition of ‘\alignat,’, which is called by
\alignat, in several ways:

(1) \tag must mean &\relax;

(2) More generally, \tag must mean &\omit&\relax if used when one &
has been omitted, or &\omit&\omit&\relax if used when two &’s have
been omitted, etc.

Fortunately, when we define \tag for \alignat and \xalignat we don’t
have to worry about additional things appearing in the preamble, as was neces-
sary for \align. On the other hand, whereas the first pass for \align simply
had \eat@{#} in the preamble for the \tag part, \alignat and \xalignat
have \maketag@#\maketagQ.

N

16.5. \alignat and \xalignat 117

(3) This means that the tag counter \tag@C will be incremented during the
first pass. So we will first store the current value of \tag@C in a new
counter \tagQCC, and then restore \tag@C to this value before doing
the second pass.

(4) Moreover, we want to disable \1abel during the first pass (or we will
be using the same (label) twice during the second pass, and get an error
message).

We could use \let\label=\eat@ for this purpose, but we will in-
stead call \unlabel@, defined by

\def\unlabel@{\def\label##1{\prevanish@\postvanish@}¥,
\def\pagelabel##1{\prevanish@\postvanish@}}

since this construction will be needed later anyway (section 32.4).

\def\unlabel@{\def\label##1{\prevanish@\postvanish@}/,
\def\pagelabel##1{\prevanish@\postvanish@}}
\newcount\tag@CC

\expandafter\def\csname alignat \endcsname#1#2\endalignat
{\inany@true\xatefalse
\gdef\tag{\global\tagltrue
\count@=#1\relax\multiply\count@ by 2
I\advance\count@ by -1|
I\gdef \tag@{&}\loop\ifnum\count@>\and@
\xdef\tag@{&|\omit|\tage}\advance\count@ by -1
\repeat\tag@ \relax[}/
\vspace@\allowdisplaybreak@\displaybreak@\intertext@
\displ@y@\measuring@true| \tag@CC=\tag@C |

\setbox\savealignat@=\hbox{|\noset@|/\unlabelel
$\meth\displaystyle\Let@
\attag@{#1}\vbox{\halign{\span\preamble@@\crcr#2\crcr}}$}%

\measuring@false

\Let@\attag@{#iﬂlpag@0=\tag@cc!

\tabskip\centering@\halign to\displaywidth

{\span\preamble@@\crcr#2\crcr\blacke{\wd\savealignat@}}}

118 Chapter 16. Displayed formulas

Similar changes are made for ‘\xalignat,’

\expandafter\def\csname xalignat \endcsname#1#2\endxalignat
{\inany@true\xat@true

\def\tag{\global\tag@true

\count@=#1\relax\multiply\count@ by 2

Badvance\count@ by -1]

[\def\tage{&} \loop\ifnum\count@>\ande

\xdef\tag{¥ \omit |\tage}\advance\count@ by -1

\repeat\t ag@l \relax}¥,
\vspace@\allowdisplaybreak@\displaybreak@\intertext@
\displ@y@\measuring@true|\tag@CC=\tagaC|

\setbox\savealignat@=\hbox{|\noset@||\unlabelel
$\m@th\displaystyle\Let@
\attag@{#1}\vbox{\halign{\span\preamble@@\crcr#2\crcr}}$}%

\measuring@false

\Let@\attage{#1}\tageC=\tageCC]|

\tabskip\centering@\halign to\displaywidth

{\span\preamble@@\crcr#2\crcr\blacke{\wd\savealignat@}}}

16.6. \gather. Finally, the A\S-TEX construction \gather also has a
\def\tag{&} clause, which must be changed to \def\tag{&\relax}:

\def\gather{\relax\ifmmode\ifinner
\def\next@{\onlydmatherr@\gather}\else
\ingather@true\inany@truﬂ)gef\tag{&\relax}L
\vspace@\allowdisplaybreak@\displaybreak@\intertext@
\displ@y\Let@

\iftagsleft@\def\next@{\csname gather \endcsname}\else
\def\next@{\csname gather \space\endcsname}\fi\fi
\else\def\next@{\onlydmatherr@\gather}\fi\next@}

Chapter 17. New counters

Having seen how \tag deals with \1abel, we are now in a position to consider
I4pS-TEX s \newcounter construction for creating a new counter.!

17.1. \newcounter. We introduce a very frequently used abbreviation

\def\exstring@{\expandafter\eat@\string}

where \eat@ from ApS-TEX is simply defined (section 1.2) as
\def\eat@#1{}
Note that if #1 is a control sequence, say \tag, then something like

\csname\exstring@#1@C\endcsname

Jjust becomes \tag@C (the \eat@ eats the \ at the beginning of \string\tag).
The first thing \newcounter\foo will do is to

\define\foo{}

to give an error message if \foo has already been defined.
Since \foo\label{(label)} is supposed to work, albeit not by the general
mechanism for \1abel’s, \foo needs to be defined in terms of a \futurelet:

\def\foo{\futurelet\next\foolZ}
We use \foo@Z because no control sequence from ApS-TEX or MvS-TEX
ends with @Z.

The name ‘\foo0Z’ will be created with

\csname\exstring@\foo @Z\endcsname

'In version 1 of 14,S-TEX, this was called \counter, because \newcounter seemed too close to
TEX’s \newcount primitive for comfort, butit actually seems unlikely that anyone (except perhaps
TEXperts!) would mistakenly type \newcount instead of \newcounter, and \newcounter fits
much better with all the other I14),S-TEX names.

119

120 Chapter 17. New counters

and to define \foo we use the same strategy that was used in section 3.2:

\edef\next@{\def\noexpand\foo{\futurelet\noexpand\next
\csname\exstring@\foo @Z\endcsnamel}}
\next@

Now \£00@Z should increase the counter \fooQC by 1, and print the prop-
erly formatted number, in the proper font:

\def\foo@Z{\global\advance\fooQC by 1
{\foo0@F\foo@S{\foo@P{\foo@N{\number\foo@C}}\foo@Q}}

(for the moment, let’s not worry about how \£o0@C, ...are to be defined).
Moreover, if \foo is followed by \label{...}, then we need a way of

getting this \1abel{...} properly recorded. To do this, we can simply use
the code

{\noexpands@\xdef\Thelabele{...}...}
{\locallabel@\label{...}}

The \1label in the second group will make sense, because the \Llocallabel@
will define \thelabel@; this \1abel will thus write to the .1lax file, and ap-
pend to \lax1list@. After the group containing \locallabel@ is finished,
however, any values of \thelabel@, ...will be restored to their previous val-
ues, so another \label will give an error message (unless \foo happens to
appear within some other construction that itself allows a \1abel).

\def\foo@Z{\global\advance\foo@C by 1
{\f00@F\f00@S{\foo@P{\foo@N{\number\foo@C}}\foo@qQ}}Y,
\ifx\next\label

\def\next@\label##1{Y
{\noexpandse@
\xdef\Thelabel@{...}...\xdef\Thelabel@@ee{....}}Y%
{\locallabel@\label{##1}}}Y
\else
\let\next@=\relax
\fi
\next@}

—_—

p——

17.1. \newcounter 121

Of course, these ##’s will all have to be ####'s, since this whole definition
appears within the definition of \newcounter. But that’s only a minor prob-
lem. We are also going to have to treat this whole thing with an \edef\next@
(compare page 82), so it is going to look pretty complicated (in particular, now
our ####'s will all have to be #it##it###'s, since an \edef changes ## to #).

The control sequence \foo@C will be specified within this \edef\next@ as

\csname\exstring@\foo @C\endcsname

and similarly for \foo@P, In all cases, TEX will make these equivalent to
\relax, so they will not be expanded further.
Finally, after all this, we can create \£00@C, ... with their proper meanings,

\expandafter\newcount@\csname\exsting@\foo@ C\endcsname

\expandafter\let\csname\exstring@\foo ON\endcsname=\arabic

Note that here we use \newcount@ (section 3.6), since it appears within a
definition, and thus might be used after \alloc@ has been returned to its old
definition. Note also that we use \1let rather than \def, just as with \tag
(page 105), but \def would be required for anything other than \arabic
(and is supplied whenever \newnumstyle is used).

In the following code for \newcounter, note that \noexpand is required
before \number, \ifx, \else and \fi because these primitives are “ex-
panded” in an \edef:

\def\newcounter#i{\define#1{}¥

\edef\next@{\def\noexpand#i{\futurelet
\noexpand\next\csname\exstring@#10Z\endcsname}}\next@

\edef\next@{\def\csname\exstring@#10Z\endcsname
{\global\advance\csname\exstring@#1eC\endcsname by 1
{\csname\exstring@#10F\endcsname
\csname\exstring@#1@S\endcsname{\csname\exstring®@
#10P\endcsname\csname\exstring@#1@N\endcsname
{\noexpand\number\csname\exstring@#1eC\endcsname},
\csname\exstring@#1@Q\endcsname}}Y,
\noexpand\ifx\noexpand\next\noexpand\label

122 Chapter 17. New counters

\def\noexpand\next@\noexpand\labeli#i#iititititi1{}

{\noexpand\noexpands@

\xdef\noexpand\Thelabel@
{\csname\exstring@#10N\endcsname
{\noexpand\number\csname\exstring@#1eC\endcsname}}},

\xdef\noexpand\Thelabel@QQ
{\noexpand\number\csname\exstring@#1eC\endcsnamel},

\xdef\noexpand\Thelabel@@
{\csname\exstring@#10@S\endcsname
{\csname\exstring@#10P\endcsname
\csname\exstring@#10N\endcsname
{\noexpand\number\csname\exstring@#1eC\endcsnamel},
\csname\exstring@#10Q\endcsname}}¥

\xdef\noexpand\Thelabel@@QQ
{\csname\exstring@#1@P\endcsname
\csname\exstring@#10N\endcsname
{\noexpand\number\csname\exstring0#1eC\endcsname}},
\csname\exstring@#10Q\endcsname}}¥%

{\noexpand\locallabel@\noexpand\label {####it###1}}%

\noexpand\else\let\noexpand\next@=\relax\noexpand\fi
\noexpand\next@}}/
\next@
\expandafter\newcount@\csname\exstring@#10C\endcsname
\expandafter\let\csname\exstring@#10N\endcsname=\arabic
\expandafter\def\csname\exstring@#1@S\endcsname##i{##1\/}Y
\expandafter\let\csname\exstring@#10P\endcsname=\empty
\expandafter\let\csname\exstring@#10Q\endcsname=\empty
\expandafter\def\csname\exstring@#10F\endcsname{\rm}
}

17.2. \usecounter. To follow through the definition of \usecounter, it
helps to consider a specific case, like the following simplification of an example
from the I4AS-TEX Manual (page 78):

(*) \usecounter\exno\example#i{{\it Example #1.},}

17.2. \usecounter 123

Here we want

\example to give {\it Example \exno.}
\example"..." to give {\it Example {\exno@F___... Y.
\example\label{...} to give {\it Example \exno\label{...}.},
where _ _ _ stands for
\let\pre=\exno@P ... \let\numstyle=\exno®N

In the third case, the combination \exno\label{. ..} will itself take care of
printing the right number, and labelling it.

Page 79 of the I4,4S-TEX Manual suggest that the user should modify (#) to
read

\usecounter\exno\example#1{{\it Example #1.} \ignorespaces}

But that’s silly—it’s clearly better to have \usecounter automatically add the
\ignorespaces. Actually, we really need to add \FNSSP@ (page 100) for
cases where |, doesn’t appear at the end of the definition, but an invisible

construction, like \pagelabel, occurs after the use of the construction being
defined.

So we really want
(E1) \example
to give {\it Example \exno.} \FNSSP@
(E2) \example"..."

to give {\it Example {\exno@F___...}.} ,\FNSSP@
(E3) \example\label{...}

to give{\it Example \exno\label{...}.}\FNSSP@

Clearly, \example is going to involve a \futurelet, so we expect that
\usecounter\exno\example should expand out to something like

\def\example{\futurelet\next\exno@ezZ}

124 Chapter 17. New counters

[Note that the subsidiary control sequence \exno@@Z is written entirely in
terms of \exno. So if we later type

\usecounter\exno\otherexample

\otherexample will then be defined exactly the same way, as
\futurelet\next\exno@ez

—though of course \exno@@Z will now end up being defined differently. This

is a reasonable arrangement, since the same counter \exno shouldn’t be al-

lowed for two different constructions.]

In the use

\usecounter\exno\example#i{{\it Example #1.}, }

we also have to somehow capture the (parameter text) and (replacement text).
This suggests that \usecounter\exno\example should expand out as

\def\example{\futurelet\next\exno@eZ}

\def\exno@eZe

where the \def\exno@@Z@ at the end will then swallow up the subsequent
(parameter text) and (replacement text), and thus, in our case,

| \def\exnoeeze#1{{\it Example #1.},

Once we have \exno@@Zg, it is easy to say what \exno@@Z should do:
(1) If \next is neither \1abel nor ", then (El1) we want

{\it Example \exno.J} \FNSSP@

which can obtained as

\exno@@Ze{\exno}\FNSSP@

S’

—

17.2. \usecounter 125

(2) If \next is ", so that we have \example"...", then (E2) we want
p

{\it Example {\exno@F \let\pre=\exno@P ...
\let\numstyle=\exno@N ... }.}, \FNSSP@

which can be obtained as

\exno@@Ze{{\exno@F \let\pre=\exno@P ..
...\let\numstyle=\exno@N ...}}\FNSSP@

(8) If \next is \1abel, so that we have \example\label{. ..}, then (E3)
we want

{\it Example \exno\label{...}.} \FNSSP@
which can be obtained as
\exno@@Z@{\exno\labelq{...}}\FNSSP@
Thus, we want \usecounter\exno\example to expand as

\def\example{\futurelet\next\exno0ezZ}
\def\exno@@Z{\ifx\next\label
\def\next@\label##1{\exno0eze
{\exno\label{#i#1}\FNSSPC}
\else
\ifx\next"\def\next@"##1"{\exno00z0
{{\exno@F_ _ _##1}}\FNSSP@}
\else
\def\next@{\exno@ezZe{\exno}\FNSSPQ}
\fi\fi\next@}
\def\exno@QZe

The general definition of \usecounter has the same features as that for
\newcounter, with several \edef\next@s. But there are some complica-
tions.

126 Chapter 17. New counters

First, we need a way of inserting the
\exno@F
which we will specify as
\csname\exstring@#1QF\endcsname

except that after this is expanded to \exno@F, which is now not \relax, we
need to inhibit further expansion of this \exno@F. This can be done with

\expandafter\noexpand\csname\exstring@#10F\endcsname

because the primitive \expandafter is “expanded” in an \edef: the \csname

.. .\endcsname is first expanded to \exno@F, and then this expansion is

placed in front of \noexpand, and consequently not expanded in the \edef!
Similar maneuvers are needed for \exno@P ... ; our \edef\nextQ will

\let\noexpand\pre=
\expandafter\noexpand\csname\exstring@#10P\endcsname

In addition, the control sequences \exno@@Z and \exno@@Z@ might already
exist, if ‘\usecounter\exno’ has already appeared (compare page 124). In
this case, the control sequences

\csname\exstring@#100Z\endcsname
\csname\exstring@#10@Z@\endcsname

would also not be \relax, and therefore they would be expanded in \edef’s,
probably with disastrous results. So we will simply \let them be \relax to
begin with.

Finally, we want to add an error message at the beginning if the first argu-
ment of \usecounter hasn’t already been created by \newcounter.

\def\usecounter#i#2{\expandafter
\ifx\csname\exstring@#10Z\endcsname\relax
\Err@{\noexpand#inot created with \string\newcounter}\fi
\expandafter\let\csname\exstring@#100Z\endcsname=\relax
\expandafter\let\csname\exstring@#100Z@\endcsname=\relax

v
N p
R

17.2. \usecounter 127

\edef\next@{\def\noexpand#2{\futurelet\noexpand\next
\csname\exstring@#10@Z\endcsname}}

\next@

\edef\next@{\def\csname\exstring@#1@@Z\endcsname
{\noexpand\ifx\noexpand\next\noexpand\label
\def\noexpand\next@\noexpand\label

##i##1{\csname\exstring@#100@Z0\endcsname
{\noexpandi#i\noexpand\label{########1}}\noexpand\FNSSP@Q}Y,
\noexpand\else
\noexpand\ifx\noexpand\next\noexpand"¥,
\def\noexpand\next@\noexpand"##i######1\noexpand"y,
{\csname\exstring@#10@Z@\endcsname{{\expandafter\noexpand
\csname\exstring@#10F\endcsname
\let\noexpand\pre=
\expandafter\noexpand\csname\exstring@#1@P\endcsname
\let\noexpand\post=
\expandafter\noexpand\csname\exstring@#1@Q\endcsname
\let\noexpand\style=
\expandafter\noexpand\csname\exstring@#10S\endcsname
\let\noexpand\numstyle=
\expandafter\noexpand\csname\exstring0#10N\endcsname
#i######13F\noexpand \FNSSP@}Y,
\noexpand\else
\def\noexpand\next@{\csname\exstring@#10@Ze\endcsname
{\noexpand#1}\noexpand\FNSSPQ}/,
\noexpand\fi\noexpand\fi\noexpand\next@}}/,
\next@
\expandafter\def\csname\exstring@#100Z@\endcsname}

Chapter 18. Lists

Now that we’ve discussed \tag, with just one counter \tag@C, it seems ap-
propriate to discuss \1ist, because it has five counters ‘\1ist@C?1’, ...,
“\1ist@C5’, corresponding to the five levels of a list (Chapter 24 explains how
this is handled by the \pre, \newprs, ..., constructions). As on pages 14, 29
and 75, we will always use quotation marks around control sequence names
like ‘\1ist@C1’, which really have to be named in the file by means of \csname
...\endcsname.

18.1. Style choices. Lists require four different style decisions, each in five
versions, for the five different levels of a list.

A. First,

(A-1) \1listbi@ will be the material (usually vertical spacing and/or penalties)
that goes before the first \item at the first level of a list.

(A.2) \1listbii@ will be the material that goes before the first \item at the
second level.

rS-TEX begins by setting the default values

\def\listbi@{\penalty50 \medskip}
\def\1listbii@{\penalty100 \smallskip}
\let\listbiii@=\relax
\let\listbiv@=\relax
\let\listbv@=\relax

Thus,

(A.1) \1listbi@ will produce a \penalty50 \medskip before the very first
\iten at the top level of a \1ist (when we define \item we will use
\1istbi@ only for the first \item at the top level [and after the previ-
ous paragraph has been ended}, so this penalty and space will not apply
to later \item’s at the top level).

(A.2) Similarly, \1istbii@ produces \penalty100 \smallskip before the
first item at the second level of a [ist.

(A.3) In the default style, nothing is added before the first item at the third
through fifth levels.

128

. .
e

18.1. Style choices 129

B. Next,

(B.1) \1listmi@ will be the changes to be made in the midst of \item’s at the
first level (usually changing the left and/or right indentations).

(B.2) \listmii@ will be the changes to be made in the midst of \item’s at
the second level.

IAS-TEX sets the default values

\def\listmi@{\advance\leftskip by 30pt}
\let\listmii@=\1listmi@
\let\listmiii@=\1listmi@
\let\listmive=\1listmi@
\let\listmv@=\1listmi@

Thus,

(B.1) \listmi@ will indent the text for \item’s at the top level by 30pt;
(B-2) \listmii@ will indent the text for \item’s at the second level by yet
another 30pt;

As we will see later (page 133), although \1istbiii@, ...can be left unde-
fined, it is important to have definitions for \1istmii@, ..., even if they are
just the same as \1listmi@.

C. Next,

(C.1) \itemi@ will specify the formatting of the \item numbers at the first
level;

(C.2) \itemii@ will specify the formatting of the \item numbers at the sec-
ond level;

MS-TEX sets the default values

\def\itemi@#1{\noindent@e\1lap{#1\hskip5pt}}
\let\itemii@=\itemi@

\let\itemiii@=\itemi®@

\let\itemive=\itemi@

\let\itemv@=\itemi@

130 Chapter 18. Lists

For the use of \noindent@@, see Chapter 8. Notice that if \everypar is non-
empty, then new paragraphs within an \item (like the one shown on page 17
of the I4S-TEX Manual), will have this \everpar material before them. (If
we wanted to prohibit that, we could simply set \everypar={} right after
the \begingroup in the definition of \1ist to follow, and use \noindent@
instead of \noindent@@ at this point.)

Thus,

(C.1) \itemi@ will format an \item number #1 as

\noindent@@\1llap{#1\hskipSpt}

The \11lap{#1\hskip5pt} simply causes the \ item number to appear
5pt to the left of the rest of the text;

(C.2) Similarly, \itemii@ formats an \item number at the second level in
exactly the same way;

D. Finally, we have some control sequences that are numbered differently:

(D.1) \1liste@ will be the formatting (usually vertical spacing and/or penal-
ties) that goes at the end of the last \item at the first level;

(D.2) \listei@ will be the formatting that goes at the end of the last \item
at the second level;

(D.5) \listeiv@ will be the formatting that goes at the end of the last \item
at the fifih level.

Thus, for reasons that will become clear (page 137) these control sequences
are “numbered” one less than the level to which they apply.
4pS-TEX sets the default values

\def\liste@{\penalty-50 \medskip}
\def\listei@{\penalty-100 \smallskip}
\let\listeii@=\relax
\let\listeiii@=\relax
\let\listeiv@=\relax

18.2. Counters, etc. 131

Thus,

(D.1) \1iste@ will produce \penalty-50 \medskip at the end of the list;
(D.2) \listei@ will produce \penalty-100 \smallskip when we go from
the end of the second level of the list back to the first level;

but nothing will be added when we go from the end of the third level back to
the second level, etc.

18.2. Counters, etc. Next we must create the counters ‘\list@C1’, ...,
“N\1ist@C5’, which we initialize to O:

\expandafter\newcount\csname 1ist@Ci\endcsname
\csname 1ist@C1\endcsname=0

We want ‘\1ist@C1’, ‘\1ist@C2, ..., in conformity with a general I4,4S-TEX
principle for handling constructions with more than one counter (see Chap-
ter 24), but we use \1listbi@, \1listbii@, ..., because there are a fixed
number of such control sequences, which we will usually be mentioning ex-
plicitly, so there’s no need to complicate matters by using names that combine
letters and numbers.

Just as we use \...QC1’, ..., ‘\...CP’ to indicate counters at various lev-
els, we also use ‘\...@QP1’, ... for the pre-material at the various levels, and

A\...0Q1, ...for the post-material at the various levels. We initialize all of
these to be empty:

\expandafter\let\csname list@P1\endcsname=\empty

\expandafter\let\csname 1ist@Qi\endcsname=\empty

Then come the styles at each level (compare page 74):

\expandafter\def\csname 1ist@Si\endcsname#1{{\rm(F#1\/{\rm)}}

Note that these styles determine the formatting of an item number, but the
spacing after the formatted number is determined by \itemi@, ... (page 130).

132 Chaper 18. Lists

In conformity with this, style control sequences in I4(S-TEX never address the
question of the spacing after the formatted number, which has to be handled
separately.

Then come the numbering styles at each level:

\expandafter\let\csname list@N1\endcsname=\arabic

Note that here we once again use \let rather than \def, just as with \tag
(page 105), but \def would be required for anything other than \arabic.
Finally, we also need the font styles at each level:

\expandafter\def\csname 1ist@F1\endcsname{\rm}

There will be occasions when we want to refer to the list counter, etc., for
the current level, without having to know or to specify this level explicitly. For
this purpose, we first create a counter,

\newcount\listlevel@
\listlevel@=0

which will always hold the current list level, and then we

\def\1list@eC{\csname 1ist@C\number\listlevel@\endcsname}
\def\1list@0P{\csname 1list@P\number\listlevel@\endcsname}
\def\1ist@@Q{\csname list@Q\number\listlevel@\endcsname}
\def\1ist@@S{\csname list@S\number\listlevel@\endcsname}
\def\1ist@ON{\csname list@N\number\listlevel@\endcsname}
\def\1list@QF{\csname list@F\number\listlevel@\endcsname}

so that, for example, \1ist@@C will be ‘\1ist@C1’ if we are at the first level,
“\1ist@C2’ if we are at the second level, etc.

18.3. Other preliminaries. Since, as we’ve already indicated in section 1, the
first \item at each level needs to be treated specially, we need flags

R

18.3. Other preliminaries 133

\newif\iffirstitemi@
\newif\iffirstitemii@
\newif\iffirstitemiii@
\newif\iffirstitemive
\newif\iffirstitemv@

Moreover, we need ways of setting the flag for each level true or false without
explicitly mentioning the level:

\def\Firstitem@true{\csname
firstitem\romannumeral\listlevel@ @true\endcsname}
\def\Firstitem@false{\csname
firstitem\romannumeral\listlevel@ @false\endcsname}

We will also need to refer to \1istm...@, \item...@, and \liste...@ with-

out having to specify the level ‘.. .’. So we define
\def\Listm@{\csname

listm\romannumeral\listlevel@ @\endcsname}
\def\Item@{\csname

listformatt\romannumeral\listlevel@ @\endcsname}
\def\Liste@{\csname
listformate\romannumeral\listlevel@ @\endcsnamel}

(For this to work, we must have \listm...@, \item...@, defined for all
levels; \Liste@ will be applied only for 1 < \listlevel@ < 5.)

Version 1 of I4,,S-TEX had \continuelist, which was meant to be used
as

\continuelist
\list

\endlist

134 Chapter 18. Lists

although the I4\S-TEX Manual mistakenly indicated the usage

\continuelist
\item

\endlist

(which would conflict with the general ‘\foo ... \endfoo’ convention for
I4\S-TEX constructions). This was a natural mistake to make, however, so
now ‘\continuelist’ has been replaced by ‘\keepitem’.

\keepiten itself will simply set a flag,

\newif\iflistcontinue®
\def\keepitem{\listcontinue@true}

while \endlist will always reset \1istcontinue@false.

184. \list. Unlike the case of \tag, whenever we start a \1ist we want
to reset the list counters ‘\1ist@C1’, ... to O, except if \keeplisting is in
force, in which case ‘\1ist@C1’ will not be changed. Then we want to begin
a group, set \firstitemi@true, set the list level counter to 1, and define
\item in terms of a \futurelet, since it needs to see if a “quoted” number
follows:1

\def\1list{}
\iflistcontinue@\else
\global\csname 1ist@C1\endcsname=0
\fi
\global\csname 1ist@C2\endcsname=0
\global\csname 1list@C3\endcsname=0
\global\csname 1list@C4\endcsname=0
\global\csname 1list@C5\endcsname=0
\begingroup
\firstitemi@true
\listlevel@=1

1An \item outside a \1ist will continue to have its usual meaning from plain TgX, though
it might be preferable to specify \Invalid@\item (see section 1.1) and to \let\itemitem=
\undef ined, since that usage more or less conflicts with I4S-TEX usage.

e

18.4. \list 135

\def\item{\futurelet\next\item@}

At this point it might seem like it's time to end the previous paragraph, and
get down to work. But we need a slight diversion, because we are also going to
allow the possibility that \1ist is followed by \runinitem instead of \item,
as in ApS-TEX. So we also need a \futurelet for that:

\def\1list{¥

\iflistcontinue@\else
\global\csname 1list@C1\endcsname=0
\fi

\global\csname 1list@C2\endcsname=0
\global\csname 1ist@C3\endcsname=0
\global\csname 1list@C4\endcsname=0
\global\csname 1list@C5\endcsname=0
\begingroup

\firstitemi@true

\listlevel@=1
\def\item{\futurelet\next\item@}y,
\futurelet\next\list@}

\runinitem has no role except to serve as an indicator after \1list [or
after \inlevel, since we also allow \runinitem to be used instead of the
first \item at each level], so (compare section 1.1) we first state

\Invalid@\runinitem

In the definition of \1ist@, the test \ifx\next\runinitem can be used to
detect if \1ist is followed by \runinitem. If \1ist@ detects a \runinitem,
it will then swallow this \runinitem and do yet another \futurelet (to see
if \runinitem is followed by a quoted number).

Otherwise, the first thing \1ist@ should do is to end the current paragraph.
At this point, however, the default style adds some adjustment for the space
between paragraphs, since paragraphs are allowed within each \item. If our
style does leave some space, say 1pt, between paragraphs, we probably want to
do the same for paragraphs within each \item. Normally, however, \parskip

136 Chapter 18. Lists

is something like ‘Opt plus 1pt’, with only stretchable space. In this situa-
tion, it is inadvisable to leave the stretchability, for, on a page requiring a fair
amount of vertical stretching, this interparagraph stretch might easily end up
looking too big compared to the other spacing that the style selects for \1ist’s
(I speak from experience!). This stretchability can be eliminated with the code

\dimen@=\parskip \parskip=\dimen@

(since \dimen@ is a dimension, the first assignment sets \dimen@ to the non-
stretchable part of \parskip, and the second assignment resets \parskip to
this non-stretchable part).

So the definition of \1ist@ might be

\def\list@{\ifx\next\runinitem
\def\next@\runinitem{\futurelet\next\runinitem@}\else
\def\next@{\par \dimen@=\parskip \parskip=\dimen@}\fi\next@}

That's not quite good enough however, because we also want to allow a
blank line before the \runinitem, since blank lines are generally allowed
before \item’s.!

So if \next happens to be \par, we will call a construction that swallows
this \par and then repeats the \futurelet\next\list@:

\def\list@{\ifx\next\par
\def\next@\par{\futurelet\next\list@}\else
\ifx\next\runinitem

\def\next@\runinitem{\futurelet\next\runinitem@}\else
\def\next@{\par \dimen@=\parskip \parskip=\dimen@},
\fi\fi\nexte}

Leaving aside the definition of \runinitem@ for the moment, we consider
the case where \item occurs next.

'On the other hand, there’s no way we can allow a blank line to occur before \1ist in a
\list\runinitem’ combination; when a run-n \item is required, the \1ist must appear
in the same paragraph as the previous text.

N

18.5. \iten 137

18.5. \item. \item has already been set to \futurelet\next\item@. Be-
fore worrying about whether a quoted \item number follows, \item@ will
take care of any needed formatting. This will involve two new flags

\newif\ifoutlevel®
\newif\ifrunin@

The first will be true if the \ item was preceded by \outlevel (so that \item’s
at a higher level have just been completed). The second will be true if the
present \item follows a \runinitem at the same level.. In either of these
cases, the appropriate flag for first \item’s at this level (\iffirstitemi@ or
\iffirstitemii@ or...) will be false.

The first thing \item@ adds is

\ifoutlevel@\Liste@\outlevel@false\fi

So, for example, if our \item occurs at the top level (\listlevel@ = 1), and
we have just completed \item’s at the second level, we will add \listei@—
recall (page 130) that this is the formatting that goes at the end of the last
\item at the second level.

The reason for this approach is that in a situation like

\list
\item ..
\inlevel
\item ...
\inlevel
\item ...
\item ..
Noutlevel]
\outlevel
\item ...

where we go from third level \item’s right back to first level \item’s, the
spacing before that next \item at the first level should be the spacing that
goes after second level items, not the spacing that goes after third level items
(and certainly not the sum of the spacing that goes after the second and third

138 Chapter 18. Lists

levels). So we don’t want the spacing to be put in by the \outlevel’s; instead
\outlevel will just set \outlevel@true, for use by \item.

Next, we consider the case where \ifrunin@ is true. In this case, we simply
want to set \runin@false, end the current paragraph (which contains the
previous \runinitem, which has not been indented any extra amount), add
the same adjustments that were made for \1ist@, in case we are at the first
level, and then add \Listm@ (the \1istm. . .@ for the current level) to apply
to the remaining \item’s at the current level:

\ifrunin@\runin@false\par
\dimen@=\parskip \parskip=\dimen@
\Listm@\fi

If neither of these cases occurs, we have to consider the possibility that the
\item was the first at its level. At the first level, this means that we will add

\listbi@ \listmi@

if \iffirstitemi@ is true, also setting \firstitemi@false, but simply add
a \par for other items:

\iffirstitemi@
\listbi@\listmi@\firstitemi@false
\else\par\fi

Note that \1istbi@ will be occurring after a \par supplied by \1list, via
\1ist@, or by \outlevel (section 8).

Analogous code is added for the situation where we are at the second level
(\iffirstitemii@...\fi); in this case, \1istbii@ will be occurring after
the \par supplied by the previous code. And similarly for the third through
fifth levels.

Each of these \iffirstitem...@ tests has to be made separately, and
\listbie,... appear only in such constructions; that is why there is no point
having a ‘\Listb@ construction.

We will use compressed format, as well as the K-method, for \item@, so
that the definition ends

\ifx\next"\expandafter\next@\else\expandafter\nextii@\fi

18.5. \item 139

with \next@ and \nextii®@ defined first.
The definitions of \next@ and \nextii@ are quite similar to the definitions

of \maketag@@@ and \maketag@0QQ, using \Qlabel@ from section 16.3 for
“quoted” \item numbers, but with some additions:

\def\next@"##1"{{\let\pre=\1ist@eP \let\post=\1listeeq
\let\style=\1ist@@S \let\numstyle=\1list@eN

| \vskip-\parskip |

\Item@{\1ist@QF#i#1}),

\noexpands@

\Qlabel@{##1}}

\locallabel®

[\Fnsspe]r

\def\nextii@{\globalladvance\list@QC by 1
{\noexpandse
\xdef\Thelabel@@@{\number\1list@eC}
\xdefThelabel@\1list@@N
\xdef\Thelabel@0@e{\1ist@@P\Thelabel@\list@eQ}}’
\xdefThelabel@@\1ist@@S

Y

\locallabel@

|\vskip-\parski§]

\Item@{\1ist@@F\thelabel@@}},

l}futurelet\next\pretendspace@D%

We add the \vskip-\parskip because \Item@ will normally start a new
paragraph, and we want the spacing before the \item to be explicitly specified
by \1istbi@, ..., and not involve any \parskip, which is easy to forget
about.

And we add the \FNSSP@ and \futurelet\next\pretendspace@’s be-
cause \Item@ puts us into horizontal mode (in the default style it also pro-
duces some space after the \item number—the \hskip5pt at the end of the
\1lap in the definition of \item...@—but this space is “hidden” inside the
\1lap, and will not be discovered by \1lastskip). So (compare section 7.2)

\item \label{...} Text .

140 Chapter 18. Lists

would leave an extra space before the “Text ...”. The \pretendspaces@’s
take care of this. In the case of \nextii@ we don’t need FNSSP@, since a space
token won't appear after \item (compare \endMath, page 102).

It should perhaps also be noted that something like \1et\pre=\1ist@eP
does not actually make \pre have the value of the appropriate ‘\1ist@P1’
or ‘\1ist@P2’ or ..., but simply makes \pre expand out to the definition of

\1list@@P, i.e., to

\csname list@P\number\listlevel@\endcsname

This is adequate, however, since we are not storing this value of \pre for later
use: when this \pre gets used, either in printing the number,

{\1list@QF##1}
or in the \xdef’s invoived in

\Qlabel@{##1}

the current value of ‘\1ist@P1’ or ‘\1ist@P2’ or ..., will be inserted.
Thus, the definition of \item@ is:

\def\iteme{Y,
\ifoutlevel@\Liste@\outlevel@false\fi
\ifrunin@\runin@false\par
\dimen@=\parskip \parskip=\dimen@ \Listm@\fi
\iffirstitemi@

\listbi@\listmi@\firstitemi@false
\else\par\fi
\iffirstitemii@
\listbii@\listmii@\firstitemii@false
\else\par\fi
\iffirstitemiii@
\listbiii@\listmiii@\firstitemiii@false
\else\par\fi
\iffirstitemive
\listbiv@\listmive\firstitemiv@false
\else\par\fi

e

S’

18.6. \runinitem@ 141

\iffirstitemv@
\listbv@\listmve\firstitemv@false
\else\par\fi
\def\next@"##1"{{\let\pre=\1istQOP \let\post=\list@eq
\let\style=\1ist@@S \let\numstyle=\1list@eN
\vskip~-\parskip
\Item@{\listQQF##1}
\noexpands@
\Qlabel@{##1}}
\locallabel@
\FNSSP@}},
\def\nextii@{\globalladvance\1list@QC by 1
{\noexpands@
\xdef\Thelabel@0d{\number\1list@eC}}
\xdefThelabel@\1list@ON
\xdef\Thelabel@0@@{\1list@@P\Thelabel@\1list@eQq}}Y
\xdefThelabel@@\1list@eS
Y
\locallabel@
\vskip-\parskip
\Item@{\1ist@CF\thelabel@e}},
\futurelet\next\pretendspace@}},
\ifx\next"\expandafter\next@\else\expandafter\nextii@\fi}

18.6. \runinitem@. \runinitem@ is similar to, but simpler than, \item@.

First, \runinitem@ sets \ifrunin@true and \Firstitem@false (to be
used by the next \item [page 137]). The preliminary formatting of \item@
isn’t necessary, so \runinitem@ then immediately defines \next@ and
\nextii@ for the compressed format:

\def\next@"##1"{{\let\pre=\1istQ@eP \let\post=\1listeeQ
\let\style=\1ist@@S \let\numstyle=\1ist@eN
\unskip\space{\1list@eFit# 1}

\noexpands@
\Qlabel@{##1}}%
\locallable@
\ignorespaces}

142 Chapter 18. Lists

\def\nextii@{\global\advance\list@QC by 1
{\noexpandsae
\xdef\Thelabel@@@{\number\1ist@eC}Y
\xdefThelabel@\1list@eN
\xdef\Thelabel0e@e{\1ist@@P\Thelabel@\1list@eQ}}Y
\xdefThelabel0@\1list@@S

YA

\locallabel@
\unskip\space{\1ist@@F\thelabele@}}

In other words, after suitably defining \thelabel@, ..., we leave a space
after the preceding text, and then print the \item number, either as explic-
itly quoted, or as supplied automatically, and then add a space. In the case
of \runinitem"..." we have to ignore any space that follows the .. .".
Notice, however, that in neither case do we have to worry about invisible con-
structions that follow, since now a real space has been inserted.

Thus, the definition of \runinitem®@ reads:

\def\runiniteme{y,
\runin@true
\Firstitem@false
\def\nexte##1{{\let\pre=\1ist@eP \let\post=\listeeQ
\let\style=\1ist@0S \let\numstyle=\1liste@eN
\unskip\space{\1list@QF##1} Y
\noexpands@
\Qlabelo{##1}}Y
\locallabel@
\ignorespaces}),
\def\nextii@{\global\advance\list@eC by 1
{\noexpandse@
\xdef\Thelabel@@@{\number\1list@aC}}
\xdefThelabel@\listQeN
\xdef\Thelabel@@0@{\1ist@@P\Thelabel@\1list@eQ}}Y,
\xdefThelabel@@\1list@QS
Y :

\\,/l'

18.7. \inlevel 143

\locallabel@
\unskip\space{\1ist@@F\thelabel@@} }%
\ifx\next"\expandafter\next@\else\expandafter\nextii@\fi}

18.7. \inlevel. We will keep each level of a list within its own group, to
localize \1listlevel@, etc.

\inlevel will simply produce an error message if \1istlevel@ is al-
ready 5. Otherwise it will provide a \begingroup and advance \1listlevel@
by 1; notice that this is not a \global\advance: the value of \listlevel@
will be different within the different groups provided by different levels. Then
we will set \Firstitem@true (i.e., set \firstitemii@true if we are at now
at the second level, \firstitemiii@true if we are now at the third level,
etc.). No special formatting has to be done by \inlevel, because, once
\listlevel@ has been correctly set, each \item will take care of all nec-
essary formatting. But we are not quite done, because we need a \futurelet
to see if a \runinitem follows:

\def\inlevel{\ifnum\listlevel@=5
\def\next@{\Err@{Already 5 levels down}}\else
\def\next@{\begingroup\advance\listlevel@ by 1
\Firstitem@true\futurelet\next\inlevel@}\fi\nexte}

If \inlevel@ detects a \runinitem, it just has to swallow this \runinitem
and call \futurelet\next\runinitem®, exactly like \1ist; otherwise noth-
ing remains to be done at all. However, just as in the case of \1ist@, we must
also allow the possibility that a \par precedes a \runinitem!:

\def\inlevel@{\ifx\next\par
\def\next@\par{\futurelet\next\inlevel@}\else
\ifx\next\runinitem

\def\next@\runinitem{\futurelet\next\runinitem@}\else
\let\next@=\relax\fi\fi\next@}

!As in the case of \List, there’s no way we can allow a blank line to occur before \inlevel in
an ‘\inlevel\runinitem’ combination; when a run-in \iten is required at a new level, the
\inlevel must appear in the same paragraph as the previous text.

144 Chapter 18. Lists

18.8. \outlevel. Similarly, \outlevel gives an error message if we are at
level 1. Otherwise, we want to end the paragraph and provide an \endgroup
to match the \begingroup provided by the previous \inlevel. Nothing
has to be done to \1listlevel@, since it will simply return to the value it
was already given before this new group had been entered. Note that it is
important to end the paragraph before the \endgroup; otherwise, the current
value of \leftskip provided by \Listm@ would no longer be in force when
the paragraph ended. In addition, before the \endgroup we need to globally
reset the counter for the current level back to 0 (in case we go down to this
level by another \inlevel). Finally, we want to set \outlevel@true, for use
by the next \item (page 137 ff.).

\def\outlevel{\ifnum\listlevel@=1
\Err@{At top levell}\else ,
\par\global\list@@C=0 \endgroup\outlevel@true\fi}

18.9. \endlist. \endlist first ends the current paragraph:

\def\endlist{\par .

Note that it’s quite possible for \endlist to occur after several consecutive
\inlevel’s—there may not be \outlevel’s to match all these \inlevel’s.
Consequently, \endlist must not only supply an \endgroup to match the
\begingroup supplied by \1ist, butit must also supply enough \endgroup’s
to match any \inlevel’s that do not having matching \outlevel’s; this is
accomplished by the following code:

\global\toks1={2}/,

\count@=\listlevel®

{\loop

\ifnum\count@>0 \global\toksi=\expandafter{\the\toksi \endgroupl})
\advance\count@ by -1

\repeat}

\the\toks1

(The possibility that an \inlevel does not have a matching \outlevel is
the reason why we reset the counters for all levels at the beginning ofa \1ist

e

18.9. \endlist 145

[page 134], even though \outlevel resets the counter for its level [see the pre-
vious page].) The \1oop is enclosed within a group for the unlikely eventuality
that some \1ist...\endlist occurs within a \loop construction (compare
page 37). Because of this, we need a \global assignment of the token list, so
we use \toks1 (compare section 1.8); and for consistency, we begin with the
\global assignment \global\toks1={}. We don’t make an abbreviation for
\toks1 because it is used so infrequently.
The \endgroup’s are followed by

\liste@
(page 130), and then by
\listcontinue@false

since \1istcontinue@true is set by \keeplisting, which appears before a
\list.

The final step is to take care of the fact that a \1ist...\endlist is not
supposed to start a new paragraph at the end, unless a new paragraph actually
appears in the file. For this we add

\vskip-\parskip
\noindent@e@

If text follows immediately after the \endlist, it will start an unindented
paragraph, with no extra space, except that provided by \1iste (and so it will
appear that the \1ist. . .\endlist has merely “interrupted” the paragraph).

On the other hand, when \endlist is followed by a \par or blank line
before new text, so that we have

\vskip-\parskip
\noindent@@
\par

the “empty paragraph” \noindent@@. ..\par doesn’t produce a blank line,
but we do get \parskip glue inserted before the \noindent@@ and also before
the text following the \par. Together with the \vskip-\parskip, this means

146 Chapter 18. Lists

that the following text, which will start a new paragraph, will have the usual
\parskip glue before it.
There is just one further detail: We need to add

\futurelet\next\pretendspace@

in case an invisible construction like \pagelabel happens to appear after the
\endlist (compare page 139).
Thus, the definition of \endlist is:

\def\endlist{\par
\global\toksi={}},
\count@=\listlevel@

{\loop
\ifnum\count@>0
\global\toksi=\expandafter{\the\toksl \endgroup},
\advance\count@ by -1
\repeatl},
\the\toksi
\liste@
\listcontinue@false
\vskip-\parskip
\noindent@@
\futurelet\next\pretendspace@}

As on page 100, note that if \bye were \outer, then \endlist\bye would give
an error message.

Notice that a \par after \endlist doesn’t have to appear explicitly for all
this to work. For example, something like

\list
\endlist
\section{...}

where \section starts a new paragraph, will behave correctly. Consequently,
this approach is preferable to one that would use a \futurelet to see if a

s

18.9. \endlist 147

\par comes next (such uses of \futurelet in sections 4 and 7 were quite
different—they were meant only to skip over any \par’s that might appear).
If somewhat different design decisions are required for the spacing after the
\endlist, we could, for example, use

\edef\parskip@{\parskip=\the\parskip}

\parskip=(dimen,;)

\noindent@@

\futurelet\next\pretendspace@

[The construction
\edef\parskip@{\parskip=\the\parskip}
is similar to the construction

\edef\@sf{\spacefactor\the\spacefactor}

used in plain TEX: the primitive \parskip is not expanded in the \edef,
but ‘\the’ i expanded, so \parskip@ means

‘\parskip=(current value of \parskip)’

after the \edef is finished.]

Chapter 19. \describe and \margins

Although \describe and \margins don’t really come next by any logical
imperative, they come next in I4,(S-TEX because they are so similar to \1ist.

19.1. \describe. Since \describe has only one level, it is simplest to
incorporate all necessary style decisions directly into the definition, with-
out using subsidiary control sequences like \1istbi@, etc. In addition,
\describe is much less complicated than \1ist because nothing gets num-
bered, \describe doesn’t have to check for a \runinitem, and \item’s in a
\describe don’t have to check to see if a " follows.

We require just one flag, for the first \item in a \describe:

\newif\iffirstdescribe@

\describe can immediately end the previous paragraph (unlike \1ist,
which has to worry about a \runinitem following); then, like \1ist, it be-
gins a group and sets \firstdescribe@true. (The default style doesn’t
bother adding ‘\dimen@=\parskip \parskip=\dimen@, but other styles
might want to add that here.) Then it simply has to define \item within
\describe, which is simply a control sequence with an argument:

\def\describe{\par

\begingroup

\firstdescribe@true

\def\item##1{)
\iffirstdescribe@
\penalty50 \medskip \vskip-\parskip
\firstdescribe@false\else\par\fi
\hangindent2pc \hangafteri
\noindent@@{\bf##1}\hskip.5em}

(compare page 130 for the use of \noindent@a).
In the definition of \item, the

\penalty50 \medskip \vskip-parskip
\hangindent2pc \hangafterl \noindent
\noindent@@{\bf##1}\hskip.5em

148

19.2. \margins 149

represent style decisions, which might be changed for other styles.
\enddescribe is also much simpler than \endlist: we simply end the

previous paragraph, add spacing and penalties (style decisions) and end the
group started by \describe:

\def\enddescribe{\par
\penalty-50 \medskip\vskip-\parskip
\endgroup}

Since \describe. . .\enddescribe is supposed to start a new paragraph
at the end (at least in the default style), we don’t need the special machinations
that were used for \endlist (page 145); of course, they could always be added
for a style that wants to handle this question differently.

19.2. \margins. The \margins construction uses the commands \pullin
and \pullinmore, rather than \item. We might as well have these give
error messages outside of a \margins. . .\endmargins construction (see sec-
tion 1.1),

\Invalid@\pullin
\Invalid@\pullinmore

There is no special formatting before the first paragraph of a \margins
construction. Nevertheless, we still need a flag

\newif\iffirstpull®

but this flag will play quite a different role than the analogous flag in
\describe: Fach \pullin command is going to start a new group, within
which \leftskip and \rightskip will be determined by the arguments of
this command; since a \pullin is usually followed by yet another \pullin,
this means that each \pullin will also have to provide the \endgroup that
matches the \begingroup from the previous \pullin, except that the first
\pullin should not provide this extra \endgroup.

150 Chapter 19. \describe and \margins

\margins, like \describe, will end the previous paragraph, begin a group,
set \firstpull@true, and then define \pullin and \pullinmore:

\def\margins{\par\begingroup\firstpull@true
\def\pullin##1##2{.. .}
\def\pullinmore##i##2{...}}

\pullin will end the previous paragraph, and supply an- \endgroup, ex-
cept for the first \pullin, as already indicated, and then start yet another
group:

\def\pullin##1##2{\par
\iffirstpull@\firstpull@false\else\endgroup\fi
\begingroup

(Notice that it is important to have the \par before the \endgroup, compare
page 144.)

In this new group we want to set \leftskip=##1 and \rightskip=##2.
But we want

\pullin{}{...} or \pullin{ }{...}

to yield \leftskip=0pt, and similarly for the second argument, so we explic-
itly have to check for these possibilities:

\def\next@{##1}Y
\ifx\next@\empty\leftskip=0Opt\else
\ifx\next@\space\leftskip=0Opt\else
\leftskip=##1\fi\fi
\def\nexto{##2}/,
\ifx\next@\empty\rightskip=Opt\else
\ifx\next@\space\rightskip=0pt\else
\rightskip=##1\fi\filignorespaces}

The final \ignorespaces is needed to get rid of any spaces following the
\pullin{...}...}.

. ;s
N

19.2. \margins 151

Normally, \margins is meant to be used as

\margins

\pullin{...}{...}
\endmargins

but our definition allows text to intervene between the ‘\margins’ command
and the first ‘\pullin’; such text will just be treated as a paragraph with no
special indentations.

Note that this definition of \pullin regards the arguments as ‘absolute’
dimensions, rather than as dimensions relative to values of \leftskip and
\rightskip that may have already been set. Indeed, when one of the argu-
ments is {} or { }, we explicitly set the value of \leftskip or \rightskip
to Opt, instead of simply leaving it alone.

Since no other I4yS-TEX macros fool with \leftskip and \rightskip,
this seems like a reasonable design decision; a sophisticated user who knows
about \leftskip and \rightskip will presumably have the sense either to
adjust the arguments of \pullin appropriately (or to use \pullinmore), or
to first set \leftskip and \rightskip to Opt before using \margins.

To make the arguments of \pullin relative dimensions, it would suffice to
replace the ‘\leftskip’ and ‘\rightskip’ with ‘\advance\leftskip’ and
‘\advance\rightskip’, respectively. In this case, we could simply omit the
‘\leftskip=Opt\relax’ and ‘\rightskip=0pt\relax’ both times.

The definition of \pullinmore follows just such a scheme, except that we
must store the current values of \leftskip and \rightskip before ending
the previous group:

\xdef\Next@{\leftskip=\the\leftskip
\rightskip=\the\rightskip}

The effect of this \xdef (compare page 147) is to make \Next@ mean

\leftskip=(current value of \leftskip)
\rightskip=(current value of \rightskip)

We need \xdef rather than \edef, because this will be followed by an
\endgroup; then, after the following \begingroup we can reinstate these

152 Chapter 19. \describe and \margins

values, before using the arguments of \pullinmore to decide how much to
\advance\leftskip or \advance\rightskip:

\def\pullinmore##i##2{\par
\xdef\Next@{\leftskip=\the\leftskip
\rightskip=\the\rightskip}}
\iffirstpull@\firstpull@false\else\endgroup\fi
\begingroup
\Next@
\def\next@{##1}
\ifx\next@\empty\else\ifx\next0\space\else
\advance\leftskip by ##1\fi\fi
\def\next@{##2}%
\ifx\next@\empty\else\ifx\next@\space\else
\advance\rightskip by ##1\fi\fi
\ignorespaces}

We use the scratch token \Next@ here, because it has been reserved for
\global assignments (page 22).
Thus, the definition of \margins is

\def\margins{\par\begingroup\firstpull@true
\def\pullin##i##2{\par
\iffirstpull@\firstpull@false\else\endgroup\fi
\begingroup
\def\next{##1}},
\ifx\next@\empty\leftskip=Opt\else
\ifx\next@\space\leftskip=Opt\else
\leftskip=##1\fi
\def\next{##2}/,
\ifx\next@\empty\rightskip=Opt\else
\ifx\next@\space\rightskip=0Opt\else
\rightskip=##2\fi\fi
\ignorespaces}),
\def\pullinmore##i##2{\par
\xdef\Next@{\leftskip=\the\leftskip
\rightskip=\the\rightskip},

Seaasse”

e’

.. -

19.2. \margins 153

\iffirstpull@\firstpull@false\else\endgroup\fi
\begingroup

\Next@

\def\next@{##1}/,
\ifx\next@\empty\else\ifx\next@\space\else
\advance\leftskip by ##i\fi\fi
\def\nexte{##2}
\ifx\next@\empty\else\ifx\next@\space\else
\advance\rightskip by ##2\fi\fi
\ignorespaces}}

And \endmargins simply has to end the current paragraph, and supply two
\endgroup’s (one to match the \begingroup from the previous \pullin
or \pullinmore, and one to match the initial \begingroup supplied by
\margins):

\def\endmargins{\par\endgroup\endgroup}

Chapter 20. \nopunct, \nospace, and \overlong

In the next chapter we will consider \demo, because it uses some prelimi-
nary constructions for \claim, the subject of the chapter after that. Since
both \demo and \claim involve punctuation and spacing that are normally
supplied by a style, but which a user might want to override, this chapter is
devoted to such considerations, which version 1 of I4\S-TEX handled with
the \nofrills construction.

20.1. \nopunct, \nospace, and \overlong. In AMS-TEX’s amsppt style,
\nofrills was used in several, not entirely consistent, ways (unfortunately
extended yet further by the AMS in their additions to the style), and this
inconsistent usage was brought over to version 1 of I4S-TEX (see the small
print on page 209).

In version 2 of \S-TEX, \nofrills has been changed to \nopunct, so
that it affects only punctuation. It then seemss silly to allow \nopunct to also
delete the spacing after the punctuation, with \usualspace required to put
this spacing back. Instead, it seems more consistent to have ‘\nospace’ to
delete the space, so that removal of the punctuation and removal of the spacing
are handled separately.

In addition to these two new control sequences, \overlong has been re-
tained. Although no construction in the default I4,4S-TEX style happens to
allow both \overlong and \nopunct or \nospace, other style might, so
our macros will allow for the possibility that any combination of \nopunct,
\nospace, and \overlong precedes some construction (however, we will as-
sume that each of these is used just once).

In M4S-TEX, \nopunct, \nospace, and \overlong all work in the same
way, by checking whether the next control sequence after any of these is in an
appropriate list, and setting a flag to be true if it is; it is then the prerogative
of that next control sequence to deal with this information (and to reset the
flags to false at the end).

We need three flags

\newif\ifnopunct@
\newif\ifnospace@
\newif\ifoverlong@

154

R

-

20.1. \nopunct, \nospace, and \overlong 155

a list, initialized as

\let\nofrillslist@=\empty

of constructions to which both \nopunct and \nospace can apply, and a list,
initialized as

\let\overlonglist@=\empty

of constructions to which \overlong can apply.

Because each of \nopunct, \nospace, and \overlong has to allow the
possibility that it is followed by one or both of the others, the macros are
complicated, though in no way interesting; basically, each will set the corre-
sponding flag to be true, although the flag may be reset to false if we eventually
find that an appropriate control sequence doesn’t follow.

First of all, each of these construction begins with a \futurelet\next:

\def\nopunct{\nopunct@true\futurelet\next\nopuncte}
\def\nospace{\nospace@true\futurelet\next\nospace@}
\def\overlong{\overlong@true\futurelet\next\overlong@}

If \nopunct is followed by \nospace or \overlong, it will swallow these
control sequences, set the corresponding flags true, and then use yet another
\futurelet:

\def\nopuncte{)

\ifx\next\nospace
\def\next@\nospace{\nospace@true\futurelet\next\nopnos@}¥

\else

\ifx\next\overlong
\def\next@\overlong{\overlong@true\futurelet\next\nopol@}%

\else
\let\next@=\nopunct@@

\fi\fi\next@}

We reach \nopunct@@ when neither \nospace nor \overlong follows our
original \nopunct, so now we have to check whether the control sequence

156 Chapter 20. \nopunct, \nospace, and \overlong

that follows is in \nofrillslist@. Ifso, we simply execute this control se-
quence (the flag \ifnopunct@ has already been set true); otherwise we reset
\ifnopunct@ to be false and give an error message, and still execute the
control sequence:

\def\nopunct@e#i{\ismember@\nofrillsliste@#1Y,
\iftest@
\let\next@=#1%
\else
\def\next@{\nopunct@false
\Err@{\noexpand\nopunct can’t be used with
\string#1}#1}$Y
\fi\next@}

(We use an argument #1 for \nopunct@@, rather than picking up the next
control sequence with a \futurelet\next, so that we can properly include
#1 in the error message.) For the use of \noexpand in this, any future, error
messages, compare section 3.4.

Temporarily leaving aside \nopnos@ and \nopol@, the other possible out-
comes of \nopunct@, we use basically the same procedures for \nospace@
and \overlong@:

\def\nospacee{),

\ifx\next\nopunct
\def\next\nopunct{\nopunct@true\futurelet\next\nopnose},

\else

\ifx\next\overlong
\def\next@\overlong{\overlong@true\futurelet\next\nosole},

\else
\let\next@=\nospace@@

\fi\fi\next@}

(notice that we use the same \nopnos@ that appeared in \nopunct@)

\def\nospace@@#1{\ismember@\nofrillslist@#1Y
\iftest@
\let\next@=#1Y

St

. s

20.1. \nopunct, \nospace, and \overlong 157

\else
\def\next@{\nospace@false
\Err@{\noexpand\nospace can’t be used with
\string#1}i#1})
\fi\next@}
\def\overlonge{),
\ifx\next\nopunct
\def\next@\nopunct{\nopunct@true\futurelet\next\nopolel}/,
\else
\ifx\next\nospace
\def\next@\nospace{\nospace@true\futurelet\next\nosole}/,
\else
\let\next@=\overlong@@
\fi\fi\next@}

(notice that we use the same \nopol@ and \nosol@ that appeared in
\nopunct@ and \nospace@)

\def\overlong@e#i{\ismember@\overlonglist@#1Y,
\iftest@ :
\let\next@=#1Y
\else
\def\next@{\overlong@false
\Err@{\noexpand\overlong can’t be used with
\string#1}#1},
\fi\nexte}

Now each of \nopnos@, \nopol@, and \nosol@ must look for the third of
the triumvirate:

\def\nopnos@{\ifx\next\overlong
\def\next@\overlong{\overlong@true\nopnosol@}\else
\let\next@=\nopnos@e\fil\nextQ}

\def\nopol@{\ifx\next\nospace
\def\next@\nospace{\nospace@true\nopnosol@}\else
\let\next@=\nopol@@\fi\next@}

158 Chapter 20. \nopunct, \nospace, end \overlong

\def\nosol@{\ifx\next\nopunct
\def\next@\nopunct{\nopunct@true\nopnosol@}\else
\let\next@=\nosol@@\fi\next@}

The first of the newly created possibilities, \nopnos@Q is easy:

\def\nopnos@@#1{\ismember@\nofrillslist@#1y
\iftest@
\let\next@=#1%
\else
\def\next@{\nopunct@false\nospace@false
\Err@{\noexpand\nopunct\noexpand\nospace
can’t be used with \string#il}#1}y,
\fi\nexte}

Notice that we may be giving the error message

\nopunct \nospace can’t be used with .

not worrying about niceties like commas between \nopunct and \nospace!

For the next two, which require testing for both \nofrillslist@ and
\overlonglist@, we will \let\nextiii@=T or F, depending on whether
or not the argument is in \nofrillslist@, and \let\nextiv@=T or F,
depending on whether or not the argument is in \overlonglist@; we
use \nextiii@ and \nextiv@ because \ismember@ redefines \next@ and
\nextii@. It helps to define a routine that makes these tests, and then also
sets \iftest@ to be true precisely when both of the tests were positive:

\def\testiio#1{\ismember@\nofrillslist@#1Y%
\iftest@\let\nextiii@=T\else\let\nextiii@=F\fi
\ismember@\overlonglist@#1¥
\iftest@\let\nextiv@=T\else\let\nextive=F\fi
\test@false
\if\nextiii@ T\if\nextive@ T\test@true\fi\fi}

Then we define \nopol@@ and \nosol@e:

M

e

20.2. Using the flags 159

\def\nopole@d#i{\testii@{#1}%

\iftest@

\let\next@=#1%

\else\def\next@{\if\nextiii@ T\else\nopunct@false\fi
\if\nextiv@ T\else\overlong@false\fi
\Err@{\if\nextiii@ T\else\noexpand\nopunct\fi
\if\nextiv@ T\else\noexpand\overlong\fi
can’t be used with \string#i}#1})

\fi\next@}

\def\nosol@e@#i{\testii@{#1}),

\iftest@\let\next0=#1%

\else\def\next@{\if\nextiii@ T\else\nospace@false\fi
\if\nextiv@ T\else\overlong@false\fi
\Err@{\if\nextiii@ T\else\noexpand\nospace\fi
\if\nextiv@ T\else\noexpand\overlong\fi
can’t be used with \string#il}#1}),

\fi\nexte}

Finally, \nopnosol@—when \nopunct, \nospace, and \overlong have
all appeared—works almost the same:

\def\nopnosol@#i{\testiie{#1})
\iftest@\let\next@=#1%
\else\def\nexte{}
\if\nextiii@ T\else\nopunct@false\nospace@false\fi
\if\nextiv@ T\else\overlong@false\fi
\Erre{/,
\if\nextiii@ T\else\noexpand\nopunct\noexpand\nospace\fi
\if\nextiv@ T\else\noexpand\overlong\fi
can’t be used with \string#i}#1}},
\fi\nexte}

20.2. Using the flags. The additional punctuation for constructions that allow
\nopunct@ will be added precisely when \ifnopunctQ@ is false, so we intro-
duce an abbreviation for that:

160 Chapter 20. \nopunct, \nospace, and \overlong

\def\punct@#i{\ifnopunct@\else#i\fi}

Similarly, we have

\def\addspace@#i{\ifnospace@\else#1\fi}

for adding the space.
Control sequences that allow \overlong are ones that normally might con-
tain an \hss, like

\def\centerline#i1{\line{\hss#1\hss}}

Any such candidates will have the \hss replaced by \hss@, which is defined
by

\def\hss@{\ifoverlong@ Opt plusi000pt minus1000pt
\else Opt plus1000pt\fi}

So both stretch and shrink will be allowed when \ifoverlong@ has been set
true, but only stretch will be allowed otherwise.

Ny 3

Chapter 21. \demo

Since \demo is one of the constructions to which \nopunct and \nospace
should apply, we put it in \nofrillsliste@:

\rightadd@\demo\to\nofrillslist@

As in ApS-TEX, we will introduce a new flag,

\newif\ifclaime@

so that each \claim can set \ifclaim@ to be true (within the group that that
\claim will begin). Then \demo can give an error message when \ifclaim@
is true, since we shouldn’t be giving a proof within the statement of a \claim.
(On the other hand, \claim will not make a similar check regarding \demo,
since we could be stating subsidiary \claim’s within a \demo. In fact, the flag
\ifclaim@ is used only by \demo, since virtually anything other than a \demo
can come within a \claim.)

As we will see in the next chapter, whenever we have started a \claim,
or something like \Thm that has been constructed using \newclaim or
\shortenclaim, not only will \ifclaim@ be true, but also \claimtype@
will be defined to be \claim or \Thm, etc. So we can give an error message
that mentions \claim when we are in the middle of a general \claim, but
will instead state

Previous \Thm has no matching \endThm
when we are in the middle of a \Thm produced with \newclaim, etc. We can
do this with

\Err@{Previous \expandafter\noexpand\claimtype@ has
no matching \string\end
\expandafter\expandafter\expandafter\eat@\expandafter
\string\claimtype@}

Here (compare page 126) the \expandafter is expanded in the error mes-
sage, so \claimtype@ is expanded—to \claim, \Thm, or whatever—before

161

162 Chapter 21. \demo

having \noexpand placed in front of it, which then prevents further ex-
pansion. See The TEXbook, page 374 for the triple \expandafter; here
\claimtype@ is expanded first, to \claim or \Thm, etc., then \string
is applied to this, and then \eat@ (section 1.2) is applied to the result of
this \string, thus eating the \ at the beginning of the \string\claim or
\string\Thm or whatever. (Finally, see section 3.4 for the spacing after the
\noexpand’ed control sequence.)
The combination

\expandafter\expandafter\expandafter\eat@\expandafter\string

will occur quite frequently, so we abbreviate it:

\def\exxx@{\expandafter\expandafter\expandafter
\eat@\expandafter\string}

Normally (i.e., when \ifclaim@ is false), \demo#1 will end the previous
paragraph and add a \smallskip (deleting the previous skip if smaller, or
using the previous skip instead, if it is larger).

Then it will begin a group and start an unindented paragraph with #1
in \smc (with spaces before and after #1 ignored, since they are presumably
typing errors); we use \noindent@@ for this (Chapter 8). This will be followed
by a colon, unless \nopunct@ preceded the demo,

\punct@:

and an \enspace, unless \nospace preceded the \demo,

\addspace@\enspace

Instead of typing a (type 12) :, we will

\let\colon@=:

and use \colon@ instead, so that a French style that makes : active can change
\colon@ (compare 3.10). Moreover, we will use

\punct@{\null\colon@}

\\m/ :

" _

Chapter 21. \demo 163

Jjust in case #1 happens to end with an upper-case letter (although this will
usually be irrelevant, since an \enspace, rather than a space, follows).

At this point, after we have determined whether or not the colon and
\enspace should be added, we will reset \ifnopunct@ and \ifnospace@
to be false immediately, even though \enddemo will also do this, just to mini-
mize problems if the user forgets the \enddemo.

Finally, we want to switch to \rm. However, we must also be careful to add
a \FNSSPQ, in case an invisible construction follows the \demo{. . .} (this will
also throw away any extraneous space after the }). We can’t simply say

\def\demo#i{\ifclaime ...
\else

\I.‘miFIIISSPQ\fi}

because \next will be \1et equal to the \£i, rather than to the next non-space
token after \demo{. . .}. So instead we have to use the definition

\def\demo#1i{\ifclaim@
\Err@{Previous \expandafter\noexpand\claimtype@ has
no matching \string\end\exxx0\claimtype@l}¥
\let\next@=\relax
\else
\par
\ifdim\lastskip<\smallskipamount
\removelastskip\smallskip\fi
\begingroup
\noindent@@{\smc\ignorespaces#1\unskip
\punct@{\null\colon@}\addspace@\enspacel}},
\nopunct@false\nospace@false
\rm
\def\next@{\FNSSP@Q}/,
\fi
\next@}

164 Chapter 21. \demo

\enddemo simply has to end the current paragraph, supply the \endgroup
to match the \begingroup from \demo, reset the flags \ifnopunct@ and
\ifnospace@, and insert a \smallskip:

\def\enddemo{\par\endgroup
\nopunct@false\nospace@false\smallskip}

Chapter 22. \claim’s

Now we come to \claim and related constructions, one of the more compli-
cated complexes in S-TEX.

22.1. Preliminaries. Tirst of all, \claim is another thing that can follow
\nopunct, so we add it to \nofrillslist@:

\rightadd@\claim\to\nofrillslist@

The fontstyle for \claim’s,

\def\claim@F{\smc}

will be needed right away, but, in fact, we will need something more general.
In Chapter 21, we pointed out that \claimtype@ will be defined to be
\claim when we have started an ordinary \claim, but \Thm when we have
started a construction like \Thm that has been constructed with \newclaim or
\shortenclaim.
Each construction like \Thm will have an associated font style \Thm@F. This
can be named (see page 119) as

\csname\exstring@\Thm @F\endcsname

or, more generally (recall the definition of \exxx@ on page 162), as

\csname\exxx@\claimtype@ F\endcsname

Since we often need to refer to this general font style, we introduce the special
construction

\def\claim@@eF{\csname\exxx@\claimtype@ @F\endcsname}

[We use a triple @Q@, rather than the double @@ used in \1ist@QF to emphasize
the distinction: \1istQeF depends on the value of the counter \1listlevel@,
the level of a \1ist, while \c1aim@@QF depends on \claimtype@, the name
of the \claim.]

165

166 Chapter 22. \claim’s

Now we can introduce \claimformat@ to indicate the general format of a
\claim:

\def\claimformatQ#1#2#3{\medbreak
\noindent@@{\smc#1 {\claim@eeF#2} #3,
\punct@{\null.}\addspace@\enspace}\sl}

(Compare page 162 for the ‘\null.’ and Chapter 8 for the \noindent@a.)
Arguments #1 and #3 for \claimformat@ are the two arguments that a user

types in
\claim{...}{...}

while argument #2 is the \claim number, either produced automatically, or
specifically “quoted” after \claim.

Section 11 explains how a style file can modify \claimformat@ to deal with
numerous possibilities for formatting different sorts of \claims in different
ways.

22.2. \clainformat@@. Since \claimformat@ is meant to be easily modified
by a style designer, it omits several messy details:

(1) Any extraneous spaces at the beginning and end of arguments #1 and
#3 should be removed.

(2) If #3 is empty, or a space (which occurs if the user types { } instead of
{}), then the space before it must be removed.

(8) #2should be the properly formatted \claim number. Moreover, if this
is empty (because the user typed \claim""), then the space before it
should be removed.

(4) A space following the \claim{...}{...} should be ignored; more
generally, we need \FNSSP@, in case an invisible construction follows.

So instead of using \claimformat@ directly, we will use \claimformat@@,
which calls \claimformat@ with all these details added. When we are us-
ing \claimformat@@, the control sequence \thelabel@@ will contain the
properly formatted claim number.! In the definition below, argument #2 cor-
responds to argument #3 for \claimformat@. Only the next-to-last line of
code needs further amplification.

! The formatting of the \claim number is specified by \claim@S—it should not be specified
directly in \claimformat@.

22.2. \claimformatQ@ 167

\def\claimformat@o#i#2{Y%
\claimformat@{\ignorespaces#1\unskip}/
{\ifx\thelabel@@\empty\unskip\else\thelabel@Q\fil},
{\ignorespaces#2\unskipl}/,
\let\Claimformat@@=\claimformat@@

\FNSSP@}

Note that it wasn’t necessary to add any special clause for the cases where
#2 is empty or a space—in either case the space preceding #2 will end up
being removed. (Section 11 illustrates how modifications may be made to the
definition of \claimformat@. In some cases, \claimformat@@ might need
some tinkering also.)

To explain the mysterious next-to-last line of code, we have to confess to
a little white lie. \claim, and all related constructions, never actually use
\claimformat@Q. Instead they use \Claimformat@@, which we will initially
set to be the same as \claimformat@e:

\let\Claimformat@@=\claimformat@@

This indirect approach has been implemented to deal with constructions
produced with \newclaim and \shortenclaim. Suppose, for example, that
we produce \Thm with

\newclaim\Thm\c{thm}{Theorem}

Roughly speaking, this defines \Thm as

\def\Thm{ ...
\def\Claimformat@@{\claimformat@@{Theorem}} ...
\claim }

The \claim in this definition will call \Claimformat@@, and hence

\claimformat@@{Theorem}

168 Chapter 22. \claim’s

so that the “Theorem’ label will automatically be inserted. Although the final
\endclaim will return \Claimformat®@Q to its original state, so that any sub-
sequent \claim will just be using \claimformat@@ (unless it happens to be
called by another construction that redefines \Claimformat@@), we add

\let\Claimformat@@=\claimformat@@

at this point, just to minimize problems if the user forgets the \endclaim.

22.3. Further preliminaries. Although we won’t consider all the complications
of \newclaim until later, there are several other aspects that we need to men-
tion before moving on.

We've already used \claimtype@ to define \claim@@@F. More generally,
we will

\def\claim@@@P{\csname\exxx0\claimtype@ @P\endcsname}
\def\claim@@@Q{\csname\exxx0\claimtype@ @Q\endcsname}
\def\claim@@@S{\csname\exxx@\claimtype@ @S\endcsname}
\def\claim@@@N{\csname\exxx@\claimtype@ @N\endcsname}

The counter has to be treated differently, however, for the following reason.
If the user directly types something like

\claim\c{thm}

then the style, numbering style, pre- and post-material for this \claim are
just the standard ones. But ¢ new counter must be involved, since such \claim’s
are to be numbered independently from other \claim’s; this new counter is
required even if no \newclaim construction has been used.

To keep track of these different numbering classes, we will introduce
\claimclass@ in addition to \claimtype@ A \claim with a particular
“class”, produced by

\claim\c{(claim class)}

defines \claimclass@ to be this (claim class) (ordinary \claim’s, which are
equivalent to \claim\c{}, define \claimclass@ to be empty). And the
\newclaim construction

\newclaim\Thm\c{thm}{Theorem}

AN

- .

22.4. Starting ¢ \claim 169

makes \Thm define \claimclass@ to be ‘thm’ also.
Now, when \claim\c{thm} is typed, we will use

\claim@Cthm
for the counter. More generally, we will use
\csname claim@C\claimclass@\endcsname
(As we will see later, the construction
\newclaim\Thm\c{thm}{Theorem}

creates \Thm@P, \Thm@Q, etc., directly, but it creates \Thm@C indirectly: first the
counter \claim@Cthm is created, if it doesn’t already exist, and then \Thm@C
is made equivalent to this counter.)

Consequently, the counter \c1aim@@QC is simply defined by:

\def\claim@@@C{\csname claim@C\claimclass@\endcsname}

It is the \claimclass@ of a construction like \Thm, etc., that determines its
numbering. Consequently,

\newclaim\Thm\c{thm}{Theorem}
\newclaim\Lem\c{lem}{Lemma}

produces \Thm'’s and \Lem’s that are numbered independently, while

\newclaim\Thm\c{thm}{Theorem}
\newclaim\Lem\c{thm}{Lemma}
makes \Thm’s and \Lem’s share the same numbering.

22.4. Startinga \claim. First we introduce the other components of a printed
\claim number:

170 Chapter 22. \claim’s

\newcount\claimeC
\claim@C=0
\let\claim@P=\empty
\let\claim@Q=\empty
\def\claim@S#1{#1\/}
\let\claim@N=\arabic

Compare page 105 for the ‘\1let\claim@N=\arabic’.

\claim initializes \ifclaim@ to be true, \claimclass@ to be empty, and
\claimtype@ to be \claim, and then uses a \futurelet to see if we are
“quoting” the claim number with a " or specifying a claim class with \c:

\def\claim{\claim@true
\let\claimclass@=\empty\def\claimtype@{\claim}}
\futurelet\next\claim@}

If \claim is followed by \c, we will use \claim@c, and if it is followed by "
we will use \claim@q,

\def\claime{%
\ifx\next\c
\let\next@=\claim@c
\else
\ifx\next"¥
\let\next@=\claim@q
\else

Otherwise, we will use
\begingroup

to begin a group. [The definitions of \claim@c (section 5) and \claim@q
(section 6) will each begin with \begingroup also; but we don’t simply put
the \begingroup into the definition of \claim because, as we will see later
(page 179), constructions produced by \newclaim or \shortenclaim lead
us directly to \claim@c, without passing through \claim.]

22.5. Starting a \claim@c 171

Then we will advance the \claim counter by 1, define \thelabelg, ...
in the usual way, and then call \Claimformat@@. In the following, we can
use \claim@C, ... rather than the more general \c1aim@@QC, ... because, as
we have just mentioned, this clause of \claim@ will only be called directly by
\claim, never indirectly by something created by \newclaim:

\def\claim@{}
\ifx\next\c
\let\next@=\claim@c
\else
\ifx\next"y
\let\next@=\claim@q
\else
\begingroup
\globalladvance\claim@C by 1
{\noexpands@
\xdef\Thelabel@e@{\number\claim@C},
\xdefThelabel@\claim@N
\xdef\Thelabel@0@@{\claim@P\Thelabel@\claim@Q}}¥
\xdefThelabel@@\claim@S
iy
\locallabel@
\let\next@=\Claimformat@e@
\fi
\fi
\next@}

22.5. Starting a \claim@c. The definition of \claim@c begins

\def\claim@c\c#1{\claim@true\begingroup

so that \claim@c swallows up the succeeding \c, sets \ifclaim@ to be true,
and then begins a group. We add the \claim@true even though this appears
in \claim, because constructions created by \newclaimand \shortenclaim
call \claim@c directly (pages 179 ff. and 182 ff.).

Next we have to find out if the counter

\csname claim@C#1\endcsname

172 Chapter 22. \claim’s

already exists (which will happen if \claim\c{#1} has already appeared);
this is easily done with the test

\expandafter\ifx\csname claim@C#1\endcsname\relax

which is true when the counter hasn’t been defined yet. If the counter has
already been defined, we simply advance it by 1. If it hasn’t been defined, we
create it, with \newcount@ (compare page 121), and set it to 1.

Then we define \claimclass@ to be #1, and define \thelabelg@, ... ;
in this case, for the preliminary construction, defining \Thelabelg, ..., we
do use the more general constructions \c1aim@@@C, ...(page 168); fortu-
nately, these definitions can all be used within \xdef’s. Finally, we need a
\futurelet to see if our \claim@c\c{.. .} is followed by a quoted number
"...", which can happen when \claim@c is called by a construction cre-
ated by \newclaim or \shortenclaim. We have to allow the possibility that
a space might intervene between the \c{...} and a ", so we use \FNSS@
(section 3.8):

\def\claim@c\c#1i{\claim@true

\begingroup

\expandafter\ifx\csname claim@C#1\endcsname\relax
\expandafter\newcount@\csname claim@C#1\endcsname
\global\csname claim@C#i\endcsname=1

\else
\globalladvance\csname claim@C#1\endcsname by 1
\fi

\def\claimclass@{#1}}

{\noexpands@
\xdef\Thelabel@0Q{\number\claim@eacl}},
\xdefThelabel@\claim@QeN
\xdef\Thelabel@QQ@{\claim@@QP\Thelabel@\claim@@@q}}¥%
\xdefThelabel@@\claim@e@S

YA

\locallabel@

\FNSSe\claim@c@}

We're not really done with \claim@c yet, but we will return to \claim@c@
in a moment.

22.7. Finishing off 173

22.6. Starting a \claim@q. For our definition of \claim@q we use \Qlabel@
from section 16.3 for defining \thelabel, ..., and we add a \FNSS@, since
we have to see whether our \claim@q is followed by \c{. ..} (possibly after
a space):

\def\claim@q"#1"{\begingroup
{\let\pre=\claim@@OP \let\post=\claim@eeq
\let\style=\claim@@@S \let\numstyle=\claim@eeN
\noexpands@

\Qlabel@{#1}}%
\locallabel@
\FNSS@\claim@q@}

Unlike the situations for \maketag@ and \item@, we are not yet ready to
actually typeset the quoted \claim number; however, the number that we
want to typeset has been safely stored in \thelabel@@, which eventually finds
its way into \claimformat@e.

In regard to the \let\pre=\claim@@@P, ..., compare page 140.

22.7. Finishing off. Let’s return to \claim@c, which ended with

\FNSS@\claim@c@

Here \claim@c@ must check to see whether \next is ". If \next is not ",
we just call \Claimformat@@. If \next is "', we will call yet another rou-
tine \claim@cq. But we will also have to make an adjustment: Remem-
ber that \claim@c has already increased the appropriate counter \csname
claim@C\claimclass@\endcsname by 1. If \claim@c@ finds a " next, so

that the claim number is actually being quoted, then it must counteract this
change:

\def\claim@ce{\ifx\next"}
\globalladvance\claim@@eC by -1
\let\next@=\claim@cq
\else\let\next@=\Claimformate@Q
\fi

\next@}

174 Chapter 22. \claim’s

The definition of \claim@cq is now fairly straightforward, using only de-
vices already encountered; instead of \Claimformat@@ at the end, we use
\FNSS@\Claimformat@@, just to get rid of a possible space following the sec-
ond ":

\def\claim@cq"#1"{{\let\pre=\claim@@eP \let\post=\claimeeeq
\let\style=\claim@@@S \let\numstyle=\claimQ@eN
\noexpands®@

\Qlabele{#1}}%
\locallabel@
\FNSS@\Claimformat@Q}

Similarly, our definition of \claim@q ended with

\FNSS@\claim@q@

where \c1aim@q@ can simply be defined by

\def\claim@q@{\ifx\next\c\expandafter\claim@qc
\else\expandafter\Claimformat@@\£fi}

(the “K-method” again, see section 1.1).
We reach \claim@qc only when we have the combination

\claim"..."\c{...}

(never via a construction that has been created with \newclaim), which is
actually pretty unlikely, since there’s not much point indicating the class of
a \claim if the number is being quoted (unless different classes of \claim’s
are going to be formatted differently, in which case the style designer has
presumably already used \newclaim to introduce a new name), but we might
as well carry it through.

Before calling \Claimformat@@, we just have to use the \c{. . .} part to de-
fine \claimclass@, and, just in case this particular class \c{. . .} of \claim’s
has never been used before, create the new counter ‘\claim@. ..’ if neces-
sary, and set it to O (not to 1, as in \claim@c, since the counter isn’t going

22.9. \newclaim 175

to be used now). And finally, we must again use \FNSS@\Claimformat@@ to
skip over any space after the \c{...}:

\def\claim@qc\c#1i{\expandafter

\ifx\csname claim@C#1\endcsname\relax
\expandafter\newcount@\csname claim@C#1\endcsname
\global\csname claim@C#1\endcsname=0 \fi
\FNSS@\Claimformat@Q}

22.8. \endclaim. Finally, \endclaim simply ends the group begun by
\claim (or \claim@c if called by something created by \newclaim or
\shortenclaim), sets \ifclaim@ and \ifnopunct@ to be false, resets
\Claimformat@@ to be \claimformat@@, and adds a \medbreak.

\def\endclaim{\endgroup\claim@false
\nopunct@false\nospace@false
\let\Claimformat@@=\claimformat@@\medbreak}

22.9. \newclai<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>