In this sample we use Lato font as the body font. For the math we use the same input as in The \TeX Companion (\S 12.5).

In all examples we use Iwona scaled 1.15

Iwona regular

First some large operators both in text: \[\int\int\int_{Q} f(x, y, z) \, dx \, dy \, dz \quad \text{and} \quad \bigcap_{y \in \Gamma_{\tilde{c}}} \partial(\tilde{X}_{y});\]

and also on display:

\[
\int\int\int\int_{Q} f(w, x, y, z) \, dw \, dx \, dy \, dz \leq \int_{\partial Q} f' \left(\max \left\{ \frac{\|w\|}{|w^2 + x^2|}, \frac{\|z\|}{|y^2 + z^2|}, \frac{\|w \oplus z\|}{\|x \oplus y\|} \right\} \right) \\
\lesssim \bigcup_{Q \in \Omega} \left[f^* \left(\frac{\{Q(t)\}}{\sqrt{1 - t^2}} \right) \right]_{t=0}^{t=\theta} - (\Delta + \nu - v)^3
\]

For \(x \) in the open interval \([-1, 1[^{\text{1}} \) the infinite sum in Equation (8) is convergent; however, this does not hold throughout the closed interval \([-1, 1]\).

\[(1 - x)^{-k} = 1 + \sum_{j=1}^{\infty} (-1)^j \left\{ \sum_{j=1}^{k} \right\} x^j \quad \text{for} \quad k \in \mathbb{N}; \quad k \neq 0. \quad (2)\]

Iwona condensed

First some large operators both in text: \[\int\int\int_{Q} f(x, y, z) \, dx \, dy \, dz \quad \text{and} \quad \bigcap_{y \in \Gamma_{\tilde{c}}} \partial(\tilde{X}_{y});\]

and also on display:

\[
\int\int\int\int_{Q} f(w, x, y, z) \, dw \, dx \, dy \, dz \leq \int_{\partial Q} f' \left(\max \left\{ \frac{\|w\|}{|w^2 + x^2|}, \frac{\|z\|}{|y^2 + z^2|}, \frac{\|w \oplus z\|}{\|x \oplus y\|} \right\} \right) \\
\lesssim \bigcup_{Q \in \Omega} \left[f^* \left(\frac{\{Q(t)\}}{\sqrt{1 - t^2}} \right) \right]_{t=0}^{t=\theta} - (\Delta + \nu - v)^3
\]

For \(x \) in the open interval \([-1, 1[^{\text{1}} \) the infinite sum in Equation (8) is conver-
gent; however, this does not hold throughout the closed interval $[-1, 1]$.

$$(1 - x)^{-k} = 1 + \sum_{j=1}^{\infty} (-1)^j \binom{k}{j} x^j \quad \text{for } k \in \mathbb{N}; k \neq 0. \quad (4)$$

Iwona light

First some large operators both in text:

$$\int\int\int_{\mathbb{Q}} f(x, y, z) \, dx \, dy \, dz \quad \text{and} \quad \bigcap_{y \in \mathbb{R}} \partial(\tilde{X}_y);$$

and also on display:

$$\int\int\int\int_{\mathbb{Q}} f(w, x, y, z) \, dw \, dx \, dy \, dz \leq \int_{\partial\mathbb{Q}} f' \left(\max \left\{ \frac{\|w\|}{|w^2 + x^2|}, \frac{\|z\|}{|y^2 + z^2|}, \frac{\|w \oplus z\|}{\|x \oplus y\|} \right\} \right)$$

$$\bigvee_{Q \in \mathbb{R}} \left[f^* \left(\frac{Q(t)}{\sqrt{1 - t^2}} \right) \right]_{t=\theta}^{t=\alpha} - (\Delta + \nu - v)^3 \quad (5)$$

For x in the open interval $]-1, 1[$ the infinite sum in Equation (8) is convergent; however, this does not hold throughout the closed interval $[-1, 1]$.

$$(1 - x)^{-k} = 1 + \sum_{j=1}^{\infty} (-1)^j \binom{k}{j} x^j \quad \text{for } k \in \mathbb{N}; k \neq 0. \quad (6)$$

Iwona light condensed

First some large operators both in text:

$$\int\int\int_{\mathbb{Q}} f(x, y, z) \, dx \, dy \, dz \quad \text{and} \quad \bigcap_{y \in \mathbb{R}} \partial(\tilde{X}_y);$$

and also on display:

$$\int\int\int\int_{\mathbb{Q}} f(w, x, y, z) \, dw \, dx \, dy \, dz \leq \int_{\partial\mathbb{Q}} f' \left(\max \left\{ \frac{\|w\|}{|w^2 + x^2|}, \frac{\|z\|}{|y^2 + z^2|}, \frac{\|w \oplus z\|}{\|x \oplus y\|} \right\} \right)$$

$$\bigvee_{Q \in \mathbb{R}} \left[f^* \left(\frac{Q(t)}{\sqrt{1 - t^2}} \right) \right]_{t=\theta}^{t=\alpha} - (\Delta + \nu - v)^3 \quad (7)$$
For x in the open interval $[-1, 1[$ the infinite sum in Equation (8) is convergent; however, this does not hold throughout the closed interval $[-1, 1].$

$$(1 - x)^{-k} = 1 + \sum_{j=1}^{\infty} \left(\frac{k}{j}\right)(-1)^j x^j$$ for $k \in \mathbb{N}; k \neq 0.$ (8)

References
