1 Description

The libgreek package sets the Greek letters in math mode (only) to use glyphs ultimately from the Libertinus\footnote{Khaled Hosny originated the \url{https://github.com/alerque/libertinus} project, now maintained by Caleb MacLennan, as a fork of the Linux Libertine fonts designed by Philipp H. Poll.} Unicode font, as made available to the “8bit” traditional \TeX{} engines thanks to the libertinus-type1 package\footnote{Bob Tennent, \url{http://ctan.org/pkg/libertinus-type1}.} \cite{libertinus-type1}. The package libertinus-type1 is not loaded, but must be present.

Thus libgreek is for people who want only to adjust Greek letters in math mode (and easily configure usage of upright or italic/slanted shapes), perhaps in the context of having changed Latin letters as well, e.g. from using the \texttt{mathastext} or the \texttt{frenchmath} packages.
Nota bene: complete math configuration is provided by the \texttt{libertinust1math} package\textsuperscript{3}, and you very probably do not want using \texttt{libgreek} if already loading \texttt{libertinust1math}!

The Greek letters all come with \texttt{\ldots up} and \texttt{\ldots it} named variants, and whether “bare” control sequences map to the ‘up’ or ‘it’ ones can be configured via package options, even midway in the document via \texttt{\libgreeksetup}. Further, the package optionally defines two math alphabets \texttt{\libgreekup} and \texttt{\libgreekit}. What ‘up’ and ‘it’ actually mean can be configured using the \texttt{upshape} and \texttt{itshape} keys at package loading time.

On old systems where the (now obsolete) \texttt{libertine-legacy}\textsuperscript{4} is installed, \texttt{libgreek} will switch automatically for backwards compatibility to a “legacy” mode which uses rather the font support files as provided by \texttt{libertine-legacy}. This “legacy” package \texttt{libgreek-legacy} uses almost unchanged the code from the original 2011 release.

On \LaTeX{} installations with \texttt{libertine-legacy} present you can author new documents using directly
\begin{verbatim}
usepackage[/\texttt{options}]{libgreek-legacy}
\end{verbatim}
but they will not be portable to installations lacking \texttt{libertine-legacy}.

The “legacy” package does not provide the \texttt{\ldots up} and \texttt{\ldots it} control sequences nor does it provide the \texttt{\libgreekup} and \texttt{\libgreekit} math alphabets, or the \texttt{\libgreeksetup} command.

To author new documents which will always use \texttt{libertinus-type1} even if moved to systems having kept in some local \texttt{texmf} tree the obsolete (and not included in \TeX{} Live for some years) \texttt{libertine-legacy} package files, use
\begin{verbatim}
usepackage[\texttt{libertinus},/\texttt{options}]{libgreek}
\end{verbatim}
This is not needed if anyone of the options recognized only by \texttt{libgreek} and not by \texttt{libgreek-legacy} is used: i.e. \texttt{serif}, \texttt{sans}, \texttt{upshape}, \texttt{itshape} and alphabets.

## 2 Documentation of the \texttt{libgreek} package

Here are the options recognized by the package:

- \texttt{libertinus} This option forces usage of the font support files from package \texttt{libertinus-type1} even if \texttt{libertine-legacy} is available on the \LaTeX{} installation.

- \texttt{serif} Configures the package to use the (type1) Libertinus Serif font. This is the default behaviour (if the “legacy” mode is not activated).

- \texttt{libertine} This is a deprecated alias for \texttt{serif}, which is provided for backwards compatibility with existing documents and does not inhibit the “legacy” mode: on a system having the \texttt{libertine-legacy} files it will end up being handed over to \texttt{libgreek-legacy}, except if some other option inhibits this.

\textsuperscript{3}Michael Sharpe, \textit{A Type 1 font and \LaTeX{} support for Libertinus Math}, \url{https://ctan.org/pkg/libertinust1math}.

\textsuperscript{4}Bob Tennent, \textit{Linux Libertine fonts for (\LaTeX{}) \LaTeX{} users}, \url{https://ctan.org/pkg/libertine-legacy}
sans Configures the package to use the (type1) Libertinus Sans font.

biolinum Configures the package to use either the Libertinus Sans font or the (type1) Biolinum font if the “legacy” mode kicks in.

\texttt{upshape=⟨shape⟩} Declares the shape to be used by the \ldots up Greek letters and the \texttt{\textbackslash libgreekup} math alphabet. Defaults to ‘n’ (without the quotes).

\texttt{itshape=⟨shape⟩} Declares the shape to be used by the \ldots it Greek letters and the \texttt{\textbackslash libgreekit} math alphabet. Defaults to ‘it’.

\texttt{scale=⟨factor⟩} will scale the font by the given factor, relative to nominal size. Example: scale=1.2 will scale by 20%.

\texttt{style=⟨ISO|French|TeX⟩} specifies the shape style of the Greek letters.

ISO means ‘italic’ for lowercase and uppercase, French means ‘upright’ for lowercase and uppercase, TeX means ‘italic’ for lowercase and ‘upright’ for uppercase.

This option will override any \texttt{greek} or \texttt{Greek} option. The package defaults to \texttt{style=TeX}.

What ‘upright’ and ‘italic’ mean is configured by the \texttt{upshape} and \texttt{itshape} respective settings.

\texttt{greek=⟨up|it|...⟩} Says whether Greek letters will be ‘upright’ or ‘italic’ i.e. whether they obey the \texttt{upshape} or \texttt{itshape} setting, i.e. whether \texttt{\alpha} et al. are \texttt{\let} to \texttt{\alphaup} (et al.) or to \texttt{\alphait} (et al.).

So \texttt{greek=it} is like \texttt{style=ISO}, and \texttt{greek=up} is like \texttt{style=French}.

For backwards compatibility with the behaviour of the 2011 release, other shape values, such as ‘n’ and ‘sl’ or even ‘sc’, are accepted. For more details, see the explanations for \texttt{Greek}. For example \texttt{greek=n} is like \texttt{style=French}.

This option is ignored if \texttt{style} is used (order does not matter).

\texttt{Greek=⟨up|it|...⟩} Says whether uppercase Greek letters (and only them) will be ‘upright’ or ‘italic’ i.e. whether they use \texttt{upshape} or \texttt{itshape}, i.e. whether \texttt{\Alpha} et al. are \texttt{\let} to \texttt{\Alphau} (et al.) or to \texttt{\Alphait} (et al.).

So to obtain lowercase to be ‘upright’ and uppercase to be ‘italic’, use \texttt{greek=up} and then \texttt{Greek=it} (\texttt{Greek} must appear after \texttt{greek} else it will be shadowed by it).

Alternatively, do not use the \texttt{greek/Greek} keys but set \texttt{upshape=it, itshape=n}, as the package by default assigns ‘italic’ to lowercase and ‘upright’ to uppercase.

This option, like the \texttt{greek} option, is ignored if the \texttt{style} option is used.

For backwards compatibility with the behaviour of the 2011 release, other shape values, such as ‘n’ and ‘sl’, are accepted. They will then override the \texttt{upshape} setting for it to match it. For example \texttt{Greek=sc} will force \texttt{upshape} to be \texttt{sc},
because the assumed style is the \TeX one of italic lowercase and upright uppercase, so setting the shape of uppercase must update the \texttt{upshape} value.

It is however recommended to use rather the \texttt{upshape|itshape|style} keys.

Using \texttt{greek=up} or \texttt{Greek=up} does not inhibit “legacy” mode although the legacy package did not a priori accept that value ‘up’. But since \LaTeX 2020-02-02, the ‘up’ shape is recognized and triggers \texttt{up→n} substitutions, so one can use that syntax even in contexts which will let the package fall back to “legacy” mode. Not recommended, though.

\texttt{series=⟨series⟩} This tells which series to use. The default is the value of \texttt{\seriesdefault} at the time of loading the package. There is no interface to configure distinct series for the ‘upright’ and ‘italic’ shapes.

\texttt{boldseries=⟨series⟩} This tells which series to use in bold math. Default is \texttt{\bfdefault} at the time of loading the package. There is no interface to configure distinct series for the ‘upright’ and ‘italic’ shapes.

\texttt{alphabets} Says whether to define \texttt{\libgreekup} and \texttt{\libgreekit}.

\begin{verbatim}
\alphatonos Ï \upsilontonos Ï \iotadieresistonos
\epsilontonos Ï \omegatonos Ï í
\etatonos Ï \upsilondieresistonos \upsilondieresis
\iotatotonos í ï
\omicrononos ó \iotadieresis í
\end{verbatim}

\begin{table}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\texttt{\texttt{\Alpha A}} & \texttt{\Nu N} & \texttt{\alpha} & \texttt{\nu} & \texttt{\varsigma} & \texttt{\digamma} & \texttt{\Sampi} & \texttt{\varSigma} \\
\hline
\texttt{\Beta B} & \texttt{\Xi Ξ} & \texttt{\beta} & \texttt{\xi} & \texttt{\varsigma} & \texttt{\digamma} & \texttt{\Sampi} & \texttt{\varSigma} \\
\hline
\texttt{\Gamma Γ} & \texttt{\Omicron O} & \texttt{\gamma} & \texttt{\omicron} & \texttt{\varsigma} & \texttt{\digamma} & \texttt{\Sampi} & \texttt{\varSigma} \\
\hline
\texttt{\Delta Δ} & \texttt{\Pi Π} & \texttt{\delta} & \texttt{\pi} & \texttt{\varsigma} & \texttt{\digamma} & \texttt{\Sampi} & \texttt{\varSigma} \\
\hline
\texttt{\Epsilon E} & \texttt{\Rho Ρ} & \texttt{\epsilon} & \texttt{\rho} & \texttt{\varsigma} & \texttt{\digamma} & \texttt{\Sampi} & \texttt{\varSigma} \\
\hline
\texttt{\Zeta Z} & \texttt{\Sigma Σ} & \texttt{\zeta} & \texttt{\sigma} & \texttt{\varsigma} & \texttt{\digamma} & \texttt{\Sampi} & \texttt{\varSigma} \\
\hline
\texttt{\Eta Η} & \texttt{\Tau Τ} & \texttt{\eta} & \texttt{\tau} & \texttt{\varsigma} & \texttt{\digamma} & \texttt{\Sampi} & \texttt{\varSigma} \\
\hline
\texttt{\Theta Θ} & \texttt{\Upsilon Υ} & \texttt{\theta} & \texttt{\upsilon} & \texttt{\varsigma} & \texttt{\digamma} & \texttt{\Sampi} & \texttt{\varSigma} \\
\hline
\texttt{\Iota I} & \texttt{\Phi Φ} & \texttt{\iota} & \texttt{\phi} & \texttt{\varsigma} & \texttt{\digamma} & \texttt{\Sampi} & \texttt{\varSigma} \\
\hline
\texttt{\Kappa K} & \texttt{\Chi Χ} & \texttt{\kappa} & \texttt{\chi} & \texttt{\varsigma} & \texttt{\digamma} & \texttt{\Sampi} & \texttt{\varSigma} \\
\hline
\texttt{\Lambda Λ} & \texttt{\Psi Ψ} & \texttt{\lambda} & \texttt{\psi} & \texttt{\varsigma} & \texttt{\digamma} & \texttt{\Sampi} & \texttt{\varSigma} \\
\hline
\texttt{\Mu M} & \texttt{\Omega Ω} & \texttt{\mu} & \texttt{\omega} & \texttt{\varsigma} & \texttt{\digamma} & \texttt{\Sampi} & \texttt{\varSigma} \\
\hline
\end{tabular}
\caption{Greek letters from LibertinusSerif in LGR encoding, upright shapes}
\end{table}
<table>
<thead>
<tr>
<th>\alphatonos</th>
<th>\upsilontonos</th>
<th>\iotadieresistonos</th>
</tr>
</thead>
<tbody>
<tr>
<td>\epsilontonos</td>
<td>\omegatonos</td>
<td>\iota</td>
</tr>
<tr>
<td>\etatonos</td>
<td>\upsilondieresistonos</td>
<td>\upsilondieresis</td>
</tr>
<tr>
<td>\iotatonos</td>
<td>\upsilon</td>
<td>\iotadieresis</td>
</tr>
<tr>
<td>\omicrontonos</td>
<td>\iota</td>
<td>\upsilon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\Alpha</th>
<th>\Alpha</th>
<th>\alpha</th>
<th>\nu</th>
<th>\upsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Beta</td>
<td>\Beta</td>
<td>\beta</td>
<td>\xi</td>
<td>\pi</td>
</tr>
<tr>
<td>\Gamma</td>
<td>\Gamma</td>
<td>\gamma</td>
<td>\omicron</td>
<td>\omicron</td>
</tr>
<tr>
<td>\Delta</td>
<td>\Delta</td>
<td>\delta</td>
<td>\rho</td>
<td>\tau</td>
</tr>
<tr>
<td>\Epsilon</td>
<td>\Rho</td>
<td>\epsilon</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
<tr>
<td>\Zeta</td>
<td>\Zeta</td>
<td>\zeta</td>
<td>\sigma</td>
<td>\sigma</td>
</tr>
<tr>
<td>\Eta</td>
<td>\Eta</td>
<td>\eta</td>
<td>\tau</td>
<td>\tau</td>
</tr>
<tr>
<td>\Theta</td>
<td>\Upsilon</td>
<td>\theta</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
<tr>
<td>\Iota</td>
<td>\Phi</td>
<td>\iota</td>
<td>\phi</td>
<td>\phi</td>
</tr>
<tr>
<td>\Kappa</td>
<td>\Chi</td>
<td>\kappa</td>
<td>\chi</td>
<td>\chi</td>
</tr>
<tr>
<td>\Lambda</td>
<td>\Psi</td>
<td>\lambda</td>
<td>\psi</td>
<td>\psi</td>
</tr>
<tr>
<td>\Mu</td>
<td>\Omega</td>
<td>\mu</td>
<td>\omega</td>
<td>\omega</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\varsigma</th>
<th>\digamma</th>
<th>\sample</th>
<th>\Sampi</th>
<th>\Digamma</th>
<th>\varsigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>\varvarsigma</td>
<td>\koppa</td>
<td>\digamma</td>
<td>\varSigma</td>
<td>\varsigma</td>
<td></td>
</tr>
<tr>
<td>\alphatonos</td>
<td>\upsilontonos</td>
<td>\iotadieresistonos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\epsilontonos</td>
<td>\omegatonos</td>
<td>\upsilondieresistonos</td>
<td>\upsilondieresis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\etatonos</td>
<td>\upsilondieresistonos</td>
<td>\upsilondieresis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\iotatonos</td>
<td>\upsilondieresis</td>
<td>\upsilondieresis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\omicrontonos</td>
<td>\upsilondieresis</td>
<td>\upsilondieresis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\Alpha</th>
<th>A</th>
<th>\Nu</th>
<th>N</th>
<th>\alpha</th>
<th>\alpha</th>
<th>\upsilon</th>
<th>\upsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Beta</td>
<td>B</td>
<td>\Xi</td>
<td>\Xi</td>
<td>\beta</td>
<td>\beta</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
<tr>
<td>\Gamma</td>
<td>\Gamma</td>
<td>\Omicron</td>
<td>O</td>
<td>\gamma</td>
<td>\gamma</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
<tr>
<td>\Delta</td>
<td>\Delta</td>
<td>\Pi</td>
<td>\Pi</td>
<td>\delta</td>
<td>\delta</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
<tr>
<td>\Epsilon</td>
<td>E</td>
<td>\Rho</td>
<td>\Rho</td>
<td>\epsilon</td>
<td>\epsilon</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
<tr>
<td>\Zeta</td>
<td>Z</td>
<td>\Sigma</td>
<td>\Sigma</td>
<td>\zeta</td>
<td>\zeta</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
<tr>
<td>\Eta</td>
<td>H</td>
<td>\Tau</td>
<td>\Tau</td>
<td>\eta</td>
<td>\eta</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
<tr>
<td>\Theta</td>
<td>\Theta</td>
<td>\Upsilon</td>
<td>\Upsilon</td>
<td>\theta</td>
<td>\theta</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
<tr>
<td>\Iota</td>
<td>I</td>
<td>\Phi</td>
<td>\Phi</td>
<td>\iota</td>
<td>\iota</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
<tr>
<td>\Kappa</td>
<td>K</td>
<td>\Chi</td>
<td>\Chi</td>
<td>\kappa</td>
<td>\kappa</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
<tr>
<td>\Lambda</td>
<td>\Lambda</td>
<td>\Psi</td>
<td>\Psi</td>
<td>\lambda</td>
<td>\lambda</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
<tr>
<td>\Mu</td>
<td>M</td>
<td>\Omega</td>
<td>\Omega</td>
<td>\mu</td>
<td>\mu</td>
<td>\upsilon</td>
<td>\upsilon</td>
</tr>
</tbody>
</table>

| \varsigma | \varsigma | \digamma | \digamma | \Sampi | \Sampi | \varSigma | \varSigma |
| \varvarsigma | \varvarsigma | \koppa | \koppa | \Digamma | \Digamma | \sampi | \sampi |  

Table 3: Greek letters from LibertinusSans in LGR encoding, upright shapes
<table>
<thead>
<tr>
<th>\alphatonos</th>
<th>\alpha</th>
<th>\upsilontonos</th>
<th>\upsilon</th>
<th>\iotatonos</th>
<th>\iota</th>
<th>\omicrontonos</th>
<th>\omicron</th>
<th>\upsilondieresistonos</th>
<th>\upsilondieresis</th>
<th>\iotadieresistonos</th>
<th>\iota</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Beta</td>
<td>\beta</td>
<td>\Xi</td>
<td>\xi</td>
<td>\Gamma</td>
<td>\gamma</td>
<td>\omicron</td>
<td>\omicron_0</td>
<td>\Delta</td>
<td>\delta</td>
<td>\Pi</td>
<td>\pi</td>
</tr>
<tr>
<td>\Epsilon</td>
<td>\epsilon</td>
<td>\Rho</td>
<td>\rho</td>
<td>\Zeta</td>
<td>\zeta</td>
<td>\Sigma</td>
<td>\sigma</td>
<td>\Eta</td>
<td>\eta</td>
<td>\Tau</td>
<td>\tau</td>
</tr>
<tr>
<td>\Theta</td>
<td>\theta</td>
<td>\Upsilon</td>
<td>\upsilon</td>
<td>\omicron</td>
<td>\omicron_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\Iota</td>
<td>\iota</td>
<td>\Phi</td>
<td>\phi</td>
<td>\Kappa</td>
<td>\kappa</td>
<td>\Chi</td>
<td>\chi</td>
<td>\Lambda</td>
<td>\lambda</td>
<td>\Psi</td>
<td>\psi</td>
</tr>
<tr>
<td>\Mu</td>
<td>\mu</td>
<td>\Omega</td>
<td>\omega</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\varsigma</td>
<td>\varsigma</td>
<td></td>
</tr>
<tr>
<td>\varvarsigma</td>
<td>\varvarsigma</td>
<td></td>
</tr>
<tr>
<td>\sampi</td>
<td>\sampi</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Greek letters from LibertinusSans in LGR encoding, italic shapes
Here are the commands defined by the package:

\libgreeksetup\{⟨key=value,...⟩\} The only allowed keys are style, greek and Greek. And for the latter two only the values up or it should be used (or values matching the upshape or itshape settings), as it is only possible after package loading time to toggle between ‘upright’ and ‘italic’ depending on whether the letter is uppercase or lowercase, but one can not switch to an altogether different shape as this would require re-declaring the symbol fonts.

If the style key is used, then greek/Greek are ignored. However, one can always naturally reuse later \libgreeksetup using only the greek and/or Greek keys.

\libgreekup This is a math alphabet. It is defined only if the package received the alphabets option.

\libgreekit This is a math alphabet. It is defined only if the package received the alphabets option.

Miscellaneous remarks:

1. Even if not receiving the option alphabets, the package will declare all Greek letters to be of type \mathalpha. The legacy package on the other hand declares them all to be of type \mathord.

2. The libgreek package ignores global class options. It handles only options originating from the \usepackage preamble declaration (or some options handed over via \PassOptionsToPackage or options passed to \libgreeksetup in the preamble or body). The libgreek-legacy package on the other hand handles global class options if it recognizes them.

3 Documentation of the libgreek-legacy package

Except for a fix to a problem with \varvarepsilon and \varvarkappa, and the handling of option libertine (which formerly would have remained effectless if used after biolimum) libgreek-legacy is functionally equivalent with the original 1.0 release of libgreek from 2011/03/14.

Compared to the 2022 libgreek, and apart from the fact that the legacy mode relies on presence of the files of libertine-legacy, the main difference is that this legacy version does not define \...up and \...it shape variants, does not provide \libgreekup and \libgreekit math alphabets, and does not define a command \libgreeksetup allowing to change the shapes midway in a document. All Greek letters are defined as math symbols of type \mathord, whereas the 2022 libgreek uses type \mathalpha.

Also, the legacy package defines even more control sequences for letters with diacritics or special variant glyphs, than does the 2022 libgreek relying on libertinus-type1 LGR-encoded fonts.

Now to the decription of the recognized options.
With the exception of \texttt{libertine} and \texttt{biolinum}, all options are of the \texttt{key=value} type.

\textbf{libertine} Configures the package to use the (type1) Libertine font (i.e. the serif font). This is the default behaviour.

\textbf{biolinum} Configures the package to use the (type1) Biolinum font (i.e. the sans serif font).

\texttt{scale=(factor)} will scale the font by the given factor, relative to nominal size (when the Libertine/Biolinum fonts are used elsewhere in the document, they will also be scaled by this factor). Note that the similar option of the \texttt{libertine-legacy} package is called \texttt{scaled} and has precisely the same effect. Example: \texttt{scale=1.2} will scale by 20%.

\texttt{style=(ISO|French|\TeX)} specifies the shape of the Greek letters. ISO means italic for lowercase and uppercase, French means upright for lowercase and uppercase, \TeX{} means italic for lowercase and upright for uppercase. This option will override any \texttt{greek} or \texttt{Greek} option. The package defaults to \texttt{style=\TeX}.

\texttt{greek=(shape)} specifies the shape (n, it, or sl) for both the lowercase and uppercase Greek letters. So \texttt{greek=it} is like \texttt{style=ISO}, and \texttt{greek=n} is like \texttt{style=French}.

\texttt{Greek=(shape)} specifies the shape (n, it, or sl) for only the uppercase Greek letters. To have lowercase upright and uppercase italic, use \texttt{greek=n, Greek=it}.

\texttt{series=(series)} tells which series to use. The default is the value of \texttt{\seriesdefault} at the time of loading the package. See the \texttt{libertine-legacy} package documentation for the admissible values (they include m, b, bx (=b) for Libertine and m, b, bx (=b), o, s for Biolinum).

\texttt{boldseries=(series)} tells which series to use in bold math. Default is \texttt{\bfdefault} at the time of loading the package.

(1) the bold italic Greek Libertine glyphs are missing from \texttt{libertine v5} and later versions up to \texttt{libertine-legacy} (or some bug in the font definition files triggers usage of \TeX{} font files not having the glyphs): the log file will contain “Missing character” entries, and the PDF will simply display nothing. With \texttt{\tracinglostchars=3} and \TeX{}Live 2021 or later, these “Missing character”’s will be reported as build errors by \TeX{}, as they should. Use bold slanted instead.

(2) the bold lowercase Greek Biolinum letters are in fact not bold.

Advanced example of use (we use slanted rather than italic to circumvent the problem mentioned above):

\begin{verbatim}
\documentclass{article}
\usepackage[\scale=2,\series=b,\greek=s1,\Greek=n]{\libgreek}
\end{verbatim}
As shown in the Table 5, the package also defines control sequences to access quite a few letters with diacritics. The displayed glyphs correspond to using \texttt{libgreek-legacy} with its default, i.e. the serif font (Libertine) is used, the lowercase italic letters are italic, and the uppercase are upright.

\section{Release history}

\texttt{libgreek} was initially developed on a computer equipped with \TeX\ Live 2010 and was released on March 14, 2011. It got a documentation update on September 23, 2012, but its source code and version number 1.0 did not change then.

The initial release used files as included in the v4 version of the \texttt{libertine} package then maintained by Michael Niedermaier and which allowed traditional non-Unicode \TeX\ engines to access glyphs of the Unicode Linux Libertine fonts as designed by Philipp H. Poll.

By the time of \TeX\ Live 2012 (and even earlier), the files needed by \texttt{libgreek} had been moved to the \texttt{libertine-legacy} package (maintained by Bob Tennent). This documentation was updated in September 2012 to mention this.

But around circa 2018 (I think) \texttt{libertine-legacy} package was moved to the “Obsolete” section of CTAN, and stopped being included in new \TeX\ Live releases. This means that \texttt{libgreek}, although still included in \TeX\ Live, was actually broken on new installations. Theoretically the user could still install \texttt{libertine-legacy} manually, but this is not easy as it is not distributed as a \texttt{.tds.zip} archive on CTAN mirrors, and furthermore the \texttt{libertine.map} may need to be renamed before being listed in some \texttt{updmap.cfg} file, else it would clash with the \texttt{libertine.map} from the current \texttt{libertine} package (maintained by Bob Tennent, and which now can be used on all engines as it auto-detects the context).

This situation, and the fact that the \texttt{libertinus-type1} package (also maintained by Bob Tennent, thanks Bob!) provides support files for the LGR encoding, thus allowing to access Greek glyphs, motivated the 2022 release of \texttt{libgreek}.

Thanks to Antoine Missier (author of \texttt{frenchmath}) for making the author aware that \texttt{libgreek} had ceased functioning and was in need of an update, and indeed for quite some years already.
Table 5: Greek letters via libgreek-legacy and default configuration (i.e. no options, or equivalently options \([\text{libertine,style=TeX}]\) giving upright uppercase, italic lowercase, and usage of the Libertine glyphs). In the 1.0 libgreek release of 2011 the \(\varvarkappa\) and \(\varvarsigma\) would have been upright like the uppercase letters, due to a bug which was fixed for the 2022 transformation into libgreek-legacy.
We will use \texttt{kvoptions} to handle options with \texttt{key=value} syntax. First let’s check for some hint that \texttt{libertine-legacy} is present and then hand over to the \texttt{libgreek-legacy}, but only if only legacy options have been used.

\begin{verbatim}
\RequirePackage{kvoptions}
\IfFileExists{ufxl03.fd}{\define@key{libgreek}{libertinus}[0]{\global\let\libgreek@nolegacy\@empty}}{\endinput}
\EndInput
\ifdefined\libgreek@nolegacy\expandafter\@gobble\else\expandafter\@firstofone\fi
\PackageInfo{libgreek}{****************************************************\MessageBreak
File ufxl03.fd exists!\MessageBreak
Thus, now handing over to libgreek-legacy.\MessageBreak
To avoid this, use libertinus option.\MessageBreak
****************************************************\@gobbletwo
\DeclareOption*{\PassOptionsToPackage{\CurrentOption}{libgreek-legacy}}%
\ProcessOptions\relax
\endinput
\RequirePackage{libgreek-legacy}
\end{verbatim}

This will do only scope-obeying things.
To minimize the author's task, we keep close to original code with minimal adaptations. In particular I decided to keep the fact that style option makes the Greek and greek options ignored. But there are some complications originating in the addition of the \libgreeksetup, which requires to keep a trace of various things, for example if style option is used at package level and then later on using \libgreeksetup the user employs the Greek/greek options.

Although the user interface is kept in a maximally backwards compatible way (i.e. even if not falling back to “legacy” the option behaviour should be stable), the underlying architecture of the symbol fonts is completely different because this package assigns two symbol fonts, one for upright, the other one for italic-like, whereas the legacy package assigns one or two symbol fonts depending on whether lowercase and uppercase letters have been assigned or not the same shape. In the legacy package the symbol fonts are mapped to either lowercase or uppercase, but in this more modern package, the symbol fonts are for the ‘upright’ and ‘italic’ shapes.

The new upshape and itshape keys allow to configure what the \...up and \...it macros will actually use as shapes.

\begin{verbatim}
41 \def\libgreek@fontfamily{LibertinusSerif}
42 \def\libgreek@scale{1}
43 \def\libgreek@upshape{n}
44 \def\libgreek@itshape{i}
45 \newif\iflibgreek@upper@up\libgreek@upper@uptrue
46 \newif\iflibgreek@lower@up
47 \edef\libgreek@series{\seriesdefault}
48 \edef\libgreek@boldseries{\bfdefault}
49 \def\libgreek@upper@shape{\libgreek@upshape}
50 \def\libgreek@lower@shape{\libgreek@itshape}
51 \def\libgreek@style{\TeX}
52 \newif\iflibgreek@sty
53 \DeclareKeyvalOption[false]{alphabets}
\end{verbatim}

We use the keyval interface mostly to not have to rework everything, if at all possible, into the kvoptions declarative interface. It is a very good thing that the latter package can be used without forcing on the user its own declarative interface... however this means that inputs such as serif=false do not generate errors but are handled exactly the same as serif=true...

\begin{verbatim}
53 \define@key{libgreek}{serif}[true]{\def\libgreek@fontfamily{LibertinusSerif}}
54 \define@key{libgreek}{serif}[true]{\def\libgreek@fontfamily{LibertinusSerif}}
55 \define@key{libgreek}{serif}[true]{\def\libgreek@fontfamily{LibertinusSerif}}
56 \define@key{libgreek}{serif}[true]{\def\libgreek@fontfamily{LibertinusSerif}}
57 \define@key{libgreek}{serif}[true]{\def\libgreek@fontfamily{LibertinusSerif}}
58 \define@key{libgreek}{scale}[1]{\def\libgreek@scale{#1}}
59 \define@key{libgreek}{scale}[1]{\def\libgreek@scale{#1}}
60 \define@key{libgreek}{scale}[1]{\def\libgreek@scale{#1}}
61 \define@key{libgreek}{scale}[1]{\def\libgreek@scale{#1}}
62 \define@key{libgreek}{scale}[1]{\def\libgreek@scale{#1}}
63 \define@key{libgreek}{scale}[1]{\def\libgreek@scale{#1}}
64 \define@key{libgreek}{scale}[1]{\def\libgreek@scale{#1}}
65 \define@key{libgreek}{series}[\def\libgreek@series{#1}]
66 \define@key{libgreek}{boldseries}[\def\libgreek@boldseries{#1}]
\end{verbatim}

The single truly Boolean option...

\begin{verbatim}
67 \DeclareBoolOption[false]{alphabets}
\end{verbatim}

We need some auxiliaries to handle the style values. As mentioned already, some extra stuff is executed for reasons of various scenarii with \libgreeksetup.
\def\libgreek@style@ISO{\libgreek@upper@upfalse\libgreek@lower@upfalse\let\libgreek@upper@shape\libgreek@itshape\let\libgreek@lower@shape\libgreek@itshape}
\def\libgreek@style@French{\libgreek@upper@uptrue\libgreek@lower@uptrue\let\libgreek@upper@shape\libgreek@upshape\let\libgreek@lower@shape\libgreek@upshape}
\def\libgreekk@style@TeX{\libgreek@upper@uptrue\libgreek@lower@upfalse\let\libgreek@upper@shape\libgreek@upshape\let\libgreek@lower@shape\libgreek@itshape}

This always resets the if\libgreek@sty to false for \libgreeksetup being usable with greek and Greek keys.
\def\libgreek@process@style{\libgreek@styfalse\ifcsname libgreek@style@\libgreek@style\endcsname\csname libgreek@style@\libgreek@style\endcsname\else\PackageWarning{libgreek}{Unknown style `\libgreek@style'}\fi}
\def\libgreek@process@shapes{\edef\libgreek@upper@shape{\libgreek@upper@shape}\edef\libgreek@lower@shape{\libgreek@lower@shape}\ifx\libgreek@upper@shape\libgreek@upshape\libgreek@upper@uptrue\else\ifx\libgreek@upper@shape\libgreek@itshape\libgreek@upper@upfalse\else\expandafter\in@\expandafter{\expandafter.\libgreek@upper@shape,}{.up,}\ifin@\libgreek@upper@uptrue\else\expandafter\in@\expandafter{\expandafter.\libgreek@upper@shape,}{.it,}\ifin@\libgreek@upper@upfalse\else\libgreek@process@upper@lastresort\fi\fi\fi\fi\fi\fi\fi\fi\fi

This stuff is a bit involved, but this is done for maximal backwards compatibility in terms of stability of behaviour (of course the real maximal stability is when the “legacy” mode gets activated).
\def\libgreek@process@shapes{%  \def\libgreek@upper@shape{\libgreek@upper@shape}{\libgreek@lower@shape}{\libgreek@upper@shape}{\libgreek@lower@shape}{\libgreek@upper@shape}{\libgreek@upper@uptrue}{\libgreek@upper@upfalse}{\expandafter\in@\expandafter{\expandafter.\libgreek@upper@shape,}{.up,}{.it,}{\libgreek@upper@uptrue}{\libgreek@upper@upfalse}{\libgreek@process@upper@lastresort}fi
The fact that packages may be handed global options is rather dangerous. Fortunately \texttt{kvoptions} has an interface to handle only local options.

This is as per the \texttt{libertinus-type1.sty} code.

We now do the post-processing regarding the shape configuration after option parsing. Once this is done we will reconfigure slightly \texttt{\libgreek@process@shapes} for usability in the document preamble or body, after the symbol fonts have been declared. As is well-known the \LaTeX\ interface to math fonts is full of “only-preamble” restrictions.

\if\libgreek@sty
  \libgreek@process@style
\else
  \libgreek@process@shapes
\fi
\def\libgreek@process@upper@lastresort{%
  \PackageWarning{libgreek}{Too late for the shape \texttt{\libgreek@upper@shape}'\MessageBreak
  originating in Greek or greek option. Ignored.\MessageBreak
  Use `up' or `it'}%}
\def\libgreek@process@lower@lastresort{%
  \PackageWarning{libgreek}{Too late for the shape \texttt{\libgreek@lower@shape}'\MessageBreak
  originating in greek option. Ignored.\MessageBreak
  Use `up' or `it'}%
Almost all options must be restricted to the package loading time only.

\DisableKeyvalOption{libgreek}{libertinus}
\DisableKeyvalOption{libgreek}{serif}
\DisableKeyvalOption{libgreek}{libertine}
\DisableKeyvalOption{libgreek}{sans}
\DisableKeyvalOption{libgreek}{biolinum}
\DisableKeyvalOption{libgreek}{scale}
\DisableKeyvalOption{libgreek}{upshape}
\DisableKeyvalOption{libgreek}{itshape}
\DisableKeyvalOption{libgreek}{series}
\DisableKeyvalOption{libgreek}{boldseries}
\DisableKeyvalOption{libgreek}{alphabets}

Declarations of the two symbol fonts, one for ‘upright’ (or whatever is configured by the upshape key), one for ‘italic’ (or whatever is configured by the itshape key). One can not specify distinct series, both ‘upright’ and ‘italic’ use the same font series. This could be added but I doubt anyone will use the package to start with...

\DeclareFontEncoding{LGR}{}
\DeclareSymbolFont{libgreekup}{LGR}{\libgreek@fontfamily-TLF}
\SetSymbolFont{libgreekup}{bold}{LGR}{\libgreek@fontfamily-TLF}
\DeclareSymbolFont{libgreekit}{LGR}{\libgreek@fontfamily-TLF}
\SetSymbolFont{libgreekit}{bold}{LGR}{\libgreek@fontfamily-TLF}
\DeclareMathSymbol{\Alphaup}{\mathalpha}{libgreekup}{65}
\DeclareMathSymbol{\Betaup}{\mathalpha}{libgreekit}{66}

As all Greek letters are already available in \ldots up and \ldots it variants, it is indeed not immediately pressing to have math alphabets, so let’s not do it by default.

\iflibgreek@alphabets
\DeclareSymbolFont{\libgreekup}{\libgreekup}
\DeclareSymbolFont{\libgreekit}{\libgreekit}
\fi

Definition of the ‘up’ \mathchar’s. There are 48 ‘standard’ ones plus 8 extras and 11 with diacritics for a total of 67 ones.

Hesitation whether I should declare with \mathalpha only if alphabets is passed to the package.

\DeclareMathSymbol{\Alphaup}{\mathalpha}{libgreekup}{65}
\DeclareMathSymbol{\Betaup}{\mathalpha}{libgreekit}{66}
Definition of the 'it' \mathchar{71}'s.

\textend{verbatim}
Alternate shapes and other glyphs.

Some glyphs with diacritics. I hesitated keeping this, which comes from some file I had constituted in September 2011 to use LGR encoded fonts, and which I am reusing here. I hesitated also defining for them both ‘up’ and ‘it’ shapes.

Definition of the \mathchar’s without ‘up/it’ postfix. There are 27 uppercase and 40 lowercase letters, for a total of 67 glyphs. Actually, as stated above, I had done some work with LGR in September 2011 when I realized that bold italic had gone missing from the “8bit” font support of libertine v5 compared to libertine v4, and was vaguely hoping that going via the LGR encoded font definition files would help, but it did not. I kept the file around, and basically only had to replace the font family name, or so I thought about ten days ago when I started re-examining the matter. But at no point did I go back to check if I had done exhaustive work in 2011 and whether some other glyphs could be accounted for by LGR (I did re-check an old file about the LGR encoding I had from that 2011 work, but did not try to check for updates). Anyway, it
is very doubtful whether it made any sense for \texttt{libgreek} to define control sequences for Greek letters with diacritics...

\begin{verbatim}
320 \def\libgreek@setgreekcs{%
321  \if\libgreek@upper@up
322    \let\Alpha\Alphaup
323    \let\Beta\Betaup
324    \let\Gamma\Gammaup
325    \let\Delta\Deltaup
326    \let\Epsilon\Epsilonup
327    \let\Zeta\Zetaup
328    \let\Eta\Etaup
329    \let\Theta\Thetaup
330    \let\Iota\Iotaup
331    \let\Kappa\Kappaup
332    \let\Lambda\Lambdaup
333    \let\Mu\Muup
334    \let\Nu\Nuup
335    \let\Xi\Xiup
336    \let\Omicron\Omicronup
337    \let\Pi\Piup
338    \let\Rho\Rhoup
339    \let\Sigma\Sigmaup
340    \let\Tau\Tauup
341    \let\Upsilon\Upsilonup
342    \let\Phi\Phiup
343    \let\Chi\Chiup
344    \let\Psi\Psiup
345    \let\Omega\Omegau
346    \let\Sampi\Sampiup
347    \let\Digamma\Digammaup
348    \let\varSigma\varSigmaup
349  \else
350    \let\Alpha\Alphait
351    \let\Beta\Betait
352    \let\Gamma\Gammait
353    \let\Delta\Deltait
354    \let\Epsilon\Epsilont
355    \let\Zeta\Zetaait
356    \let\Eta\Etauait
357    \let\Theta\Thetait
358    \let\Iota\Iotaait
359    \let\Kappa\Kappaait
360    \let\Lambda\Lambdait
361    \let\Mu\Muait
362    \let\Nu\Nuait
363    \let\Xi\Xiait
364    \let\Omicron\Omicronait
365    \let\Pi\Piait
366    \let\Rho\Rhoait
\end{verbatim}

20
\let\Sigma\Sigma it
\let\Tau\Tau it
\let\Upsilon\Upsilon it
\let\Phi\Phi it
\let\Chi\Chi it
\let\Psi\Psi it
\let\Omega\Omega it
\let\Sampi\Sampi it
\let\Digamma\Digamma it
\let\varSigma\varSigma it
\fi
\iflibgreek@lower@up
\let\alpha\alpha up
\let\beta\beta up
\let\gamma\gamma up
\let\delta\delta up
\let\epsilon\epsilon up
\let\zeta\zeta up
\let\eta\eta up
\let\theta\theta up
\let\iota\iota up
\let\kappa\kappa up
\let\lambda\lambda up
\let\mu\mu up
\let\nu\nu up
\let\xi\xi up
\let\omicron\omicron up
\let\pi\pi up
\let\rho\rho up
\let\sigma\sigma up
\let\tau\tau up
\let\upsilon\upsilon up
\let\phi\phi up
\let\chi\chi up
\let\psi\psi up
\let\omega\omega up
\let\varsigma\varsigma up
\let\varvarsigma\varvarsigma up
\let\sampi\sampi up
\let\digamma\digamma up
\let\koppa\koppa up
\let\alphatonos\alphatonos up
\let\epsilontonos\epsilontonos up
\let\etatonos\etatonos up
\let\etatonos\etatonos up
\let\omicrontonos\omicrontonos up
\let\upsilontonos\upsilontonos up
\let\omegatonos\omegatonos up
\let\upsilondieresitonos\upsilondieresitonos up
And we have now reached the end of the \texttt{libgreek} package code. The actual \texttt{.sty} file will contain an \texttt{\endinput} added by the DocStrip extraction.
6 Implementation of the \texttt{libgreek-legacy} package

We use a rather short summary line because the package name is long and we are maniac and want the thing to occupy only one line in the log file...

\begin{verbatim}
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{libgreek-legacy} [2022/11/11 1.1 libertine-legacy math Greek (JFB)]
\end{verbatim}

The font support from obsolete package \texttt{libertine-legacy} must be present. The legacy code used one of two possible font definition files for the \LaTeX{} font system with U encoding, either associated with Libertine or Biolinum. We check if the Libertine-associated file exists, else abort with an Error.

\begin{verbatim}
\IfFileExists{ufxl03.fd}{%
  %
  \PackageError{libgreek-legacy}{%
    Required font support file not present%
  }{%
    Is (now obsolete) libertine-legacy or earlier libertine v4 or v5\MessageBreak
    package installed on your system?\MessageBreak
    Maybe you meant to use libgreek not libgreek-legacy?\MessageBreak
    Try again with libgreek, not libgreek-legacy. Will abort now, sorry}%
  \endinput
}{%
  \PackageError{libgreek-legacy}{%
    Required font support file not present%
  }{%
    Is (now obsolete) libertine-legacy or earlier libertine v4 or v5\MessageBreak
    package installed on your system?\MessageBreak
    Maybe you meant to use libgreek not libgreek-legacy?\MessageBreak
    Try again with libgreek, not libgreek-legacy. Will abort now, sorry}%
  \endinput
}
\end{verbatim}

Now back to the old 2011 code.

\begin{verbatim}
def\libgreek@font{fxl03}
def\libgreek@shape{it}
def\libgreek@uppershape{n}
newif\iflibgreek@twoshapes\libgreek@twoshapetrue
edef\libgreek@series{\seriesdefault}
edef\libgreek@boldseries{\bfdefault}
newif\iflibgreek@sty

Original package used only \texttt{keyval} package and handled options via a \texttt{\ProcessOptionsWithKV} which had been copied-pasted from some forgotten source. Let’s rather load \texttt{kvoptions}. But we will not use its declarative interface, only \texttt{\define@key} directly.

No need for a \texttt{\fxb@scale} for Biolinum as file \texttt{ufxb03.fd} also uses \texttt{\fxl@scale}.

\begin{verbatim}
\RequirePackage{kvoptions}
\define@key{libgreek}{scale}[1]{\def\fxl@scale{#1}}
\end{verbatim}

The 1.0 code did not let the \texttt{libertine} key do the \texttt{\def} as has been added at 1.1, thus in situation with biolinum,\texttt{libertine} it did not revert action of biolinum.

By the way this \texttt{keyval} strange syntax means that \texttt{libertine=false} will have exact same effect \texttt{libertine=true... it is only there to allow its usage without a =value part...}

\begin{verbatim}
def@key{libgreek}{libertine}[true]{\def\libgreek@font{fxl03}}
def@key{libgreek}{biolinum}[true]{\def\libgreek@font{fxb03}}
def@key{libgreek}{style}[\libgreek@stytrue]{\edef\libgreek@style{#1}}
def@key{libgreek}{Greek}{\libgreek@Greekshape[#1]}edef@key{libgreek}{greek}{\edef\libgreek@shape{#1}}
edef@key{libgreek}{series}{\edef\libgreek@series{#1}}
\end{verbatim}

23
Now we call the \texttt{kvoptions} interface. We did not change the family key from legacy code so we have to inform \texttt{kvoptions} about that. Then \texttt{\ProcessKeyvalOptions} replaces the 1.0 definition of some \texttt{\ProcessOptionsWithKV}. No need to set the prefix key as we don’t use \texttt{kvoptions} declarative interface.

\begin{verbatim}
32 \SetupKeyvalOptions{family=libgreek}
33 \ProcessKeyvalOptions*
34 \def\lbgs{ISO}
35 \def\lbgf{French}
36 \iflibgreek@sty
37 \ifx\libgreek@style\lbgs
38 \def\libgreek@shape{it}
39 \libgreek@twoshapesfalse
40 \else
41 \ifx\libgreek@style\lbgf
42 \def\libgreek@shape{n}
43 \libgreek@twoshapesfalse
44 \else
45 \def\libgreek@shape{it}
46 \def\libgreek@uppershape{n}
47 \fi\fi
48 \else
49 \ifx\libgreek@Greekshape\undefined
50 \else\edef\libgreek@uppershape{\libgreek@Greekshape}fi
51 \fi\libgreek@twoshapesfalse\fi
52 fi
\end{verbatim}

The \texttt{libgreekfont} is the one for lowercase (and perhaps uppercase).

53 \texttt{\DeclareSymbolFont{libgreekfont}{U}{\libgreek@font}}
54 \texttt{\libgreek@series}
55 \texttt{\libgreek@shape}
56 \texttt{\SetSymbolFont{libgreekfont}{bold}{U}{\libgreek@font}}
57 \texttt{\libgreek@boldseries}
58 \texttt{\libgreek@shape}

59 \texttt{\def\libgreek@Greek{libgreekfont}}

If a separate one is needed for uppercase it is \texttt{libGreekfont}.

60 \texttt{\iflibgreek@twoshapes}
61 \texttt{\DeclareSymbolFont{libGreekfont}{U}{\libgreek@font}}
62 \texttt{\libgreek@series}
63 \texttt{\libgreek@uppershape}
64 \texttt{\SetSymbolFont{libGreekfont}{bold}{U}{\libgreek@font}}
65 \texttt{\libgreek@boldseries}
66 \texttt{\libgreek@uppershape}
67 \texttt{\def\libgreek@Greek{libGreekfont}}
68 \fi
The macro `\libgreek@Greek` holds the symbol font name for uppercase.

Here the legacy code has all definitions done in the order of the codepoint; this was a bit perilous as lowercase may be intermixed with uppercase, and indeed on two occasions (`\varvarkappa` and `\varvarsigma`) the possibly wrong font was assigned.

Apart from that, it is not exactly clear why I decided to define control sequences for letters with diacritics; it was not even really documented, as the user was only invited to check a `libgreekcheck.tex` file (now not included anymore among extracted files from the `.dtx`).

Another thing to notice is that all those Greek letters are here defined to be of type `\mathord`.

\begin{verbatim}
69 \DeclareMathSymbol{\Alphatonos}{\mathord}{\libgreek@Greek}{134}
70 \DeclareMathSymbol{\anoteleia}{\mathord}{\libgreekfont}{135}
71 \DeclareMathSymbol{\Epsilontonos}{\mathord}{\libgreek@Greek}{136}
72 \DeclareMathSymbol{\Etatonos}{\mathord}{\libgreek@Greek}{137}
73 \DeclareMathSymbol{\Iotatonos}{\mathord}{\libgreek@Greek}{138}
74 \DeclareMathSymbol{\Upsilontonos}{\mathord}{\libgreek@Greek}{142}
75 \DeclareMathSymbol{\Omegatonos}{\mathord}{\libgreek@Greek}{143}
76 \DeclareMathSymbol{\iotadieresistonos}{\mathord}{\libgreekfont}{144}
77 \DeclareMathSymbol{\Alpha}{\mathord}{\libgreek@Greek}{145}
78 \DeclareMathSymbol{\Beta}{\mathord}{\libgreek@Greek}{146}
79 \DeclareMathSymbol{\Gamma}{\mathord}{\libgreek@Greek}{147}
80 \DeclareMathSymbol{\Delta}{\mathord}{\libgreek@Greek}{148}
81 \DeclareMathSymbol{\Epsilon}{\mathord}{\libgreek@Greek}{149}
82 \DeclareMathSymbol{\Zeta}{\mathord}{\libgreek@Greek}{150}
83 \DeclareMathSymbol{\Eta}{\mathord}{\libgreek@Greek}{151}
84 \DeclareMathSymbol{\Theta}{\mathord}{\libgreek@Greek}{152}
85 \DeclareMathSymbol{\Iota}{\mathord}{\libgreek@Greek}{153}
86 \DeclareMathSymbol{\Kappa}{\mathord}{\libgreek@Greek}{154}
87 \DeclareMathSymbol{\Lambda}{\mathord}{\libgreek@Greek}{155}
88 \DeclareMathSymbol{\Mu}{\mathord}{\libgreek@Greek}{156}
89 \DeclareMathSymbol{\Nu}{\mathord}{\libgreek@Greek}{157}
90 \DeclareMathSymbol{\Xi}{\mathord}{\libgreek@Greek}{158}
91 \DeclareMathSymbol{\Omicron}{\mathord}{\libgreek@Greek}{159}
92 \DeclareMathSymbol{\Pi}{\mathord}{\libgreek@Greek}{160}
93 \DeclareMathSymbol{\Rho}{\mathord}{\libgreek@Greek}{161}
94 \DeclareMathSymbol{\Sigma}{\mathord}{\libgreek@Greek}{162}
95 \DeclareMathSymbol{\Tau}{\mathord}{\libgreek@Greek}{163}
96 \DeclareMathSymbol{\Upsilon}{\mathord}{\libgreek@Greek}{164}
97 \DeclareMathSymbol{\Phi}{\mathord}{\libgreek@Greek}{165}
98 \DeclareMathSymbol{\Chi}{\mathord}{\libgreek@Greek}{166}
99 \DeclareMathSymbol{\Psi}{\mathord}{\libgreek@Greek}{167}
100 \DeclareMathSymbol{\Omega}{\mathord}{\libgreek@Greek}{168}
101 \DeclareMathSymbol{\iotadieresistonos}{\mathord}{\libgreek@Greek}{169}
102 \DeclareMathSymbol{\upsilondieresistonos}{\mathord}{\libgreek@Greek}{170}
103 \DeclareMathSymbol{\alphatonos}{\mathord}{\libgreekfont}{171}
104 \DeclareMathSymbol{\epsilontonos}{\mathord}{\libgreekfont}{172}
105 \DeclareMathSymbol{\etatonos}{\mathord}{\libgreekfont}{173}
106 \DeclareMathSymbol{\tetatonos}{\mathord}{\libgreekfont}{174}
107 \DeclareMathSymbol{\omegatonos}{\mathord}{\libgreekfont}{175}
108 \DeclareMathSymbol{\upsilondieresistonos}{\mathord}{\libgreekfont}{176}
109 \DeclareMathSymbol{\alpha}{\mathord}{\libgreekfont}{177}
\end{verbatim}
The 1.0 code used \libgreek@Greek here for the next two but this was a bug, so after some hesitation I fix it for the 1.1 release, eleven years later...
Those for some reason got listed here last, despite having lower codepoints.

And we have now reached the end of the libgreek-legacy package code. The actual .sty file will contain an \endinput added by the DocStrip extraction.