
Creating a mailing

Johannes Braams

september 7, 1994

1 Introduction

This package is intended to be used when you want to send a large number of
letters, all with (almost) the same text.

This package is based on the former style option merge by Graeme McKinstry,
but is is a reimplementation with a different user interface.

2 The user interface

The commands \addressfile takes a filename as its argument. When the file\addressfile

can’t be found by LATEX, the user will be asked to supply a different name.
The address file should have the following format:

Name of addressee

Street\\town

Opening text of the letter

(optional definitions)

<blank line>

Name of addressee

Street\\town

Opening text of the letter

(optional definitions)

<blank line>

...

The various addresses are separated by a blank line in the file (multiple blank lines
in between addresses are allowed). It is also possible to have multiple lines with
definitions; they will all be executed.

The text of the mailing is entered as the argument of \mailingtext. A differ-\mailingtext

ence with the original merge.sty is that this package allows control sequences in
the argument of \mailingtext. These control sequences should then be defined
in the file with the address information.

When \makemailing is called the letters are produced, combining the infor-\makemailing

mation found in the address file with the text of the mailing.

1



mailing package version v1.0b as of 2004/02/20 2

3 The implementation

3.1 User interface

\addressfile The argument to \adressfile is the name of the file with the address information.
1 \newcommand{\addressfile}[1]{%

2 \def\M@filename{#1}}

\mailingtext The argument to this macro contains the entire text of the mailing. The text may
contain control sequences to be able to make variations in the text.
3 \long\def\mailingtext#1{\global\mailing@text={#1}}

\makemailing The command \makemailing will produce the mailing, reading addresses, open-
ings and optional definitions of variable text parts from an external file.
4 \def\makemailing{%

5 \M@openadrfile

6 \loop

7 \read@info

8 \if@notready

9 \begin{letter}{\M@toname\\\M@toaddress}%

10 \opening{\M@opening}%

11 \vskip\baselineskip

12 \the\mailing@text

13 \end{letter}

14 \fi

15 \if@notready

16 \repeat}

3.2 Allocations

\M@adrfile We need to allocate an input stream for the file with the address information.
17 \newread\M@adrfile

\mailing@text The contents of the letter are stored in a token register
18 \newtoks\mailing@text

\if@notready A switch which indicates if the file \M@adrfile has been exhausted.
19 \newif\if@notready

20 \newif\if@notemptyoreof

3.3 Internal macros

\M@openadrfile The macro \M@openadrfile tries to open \M@filename. It that doesn’t succeed
it asks the user to supply a new name. This is done untill a file is found.
21 \def\M@openadrfile{%

22 \openin\M@adrfile\M@filename\relax

23 \ifeof\M@adrfile

24 \loop

25 %\PackageWarning{mailing}{I can’t find the file \M@filename}

26 \typeout{I can’t find the file \M@filename!}

27 \closein\M@adrfile

28 \typein[\M@filename]{Enter a new name}



mailing package version v1.0b as of 2004/02/20 3

29 \openin\M@adrfile\M@filename

30 \ifeof\M@adrfile

31 \repeat

32 \fi}

\read@info The macro \read@info takes care of the reading of all the information from
\M@adrfile, needed to format another letter.
33 \def\read@info{%

34 \skip@empty@lines

The macro \skip@empty@lines leaves the non-empty line it found in \M@lines.
If it found an end of file condition the \if@notready flag will be set to \iffalse.
35 \if@notready

36 \let\M@toname\M@line

37 \read\M@adrfile to\M@toaddress

38 \read\M@adrfile to\M@opening

39 \test@eof

40 \if@notready\read@defs\fi

41 \fi

42 }

\read@defs Reads definitions of control sequences from the file \M@adrfile until either an
empty line is found or the end of file is reached. Each line is stored in a control
sequence and it is executed after all definitions are read.
43 \def\read@defs{%

44 \def\M@defns{}%

45 {\loop

46 \endlinechar=-1

47 \read\M@adrfile to\M@line

48 \endlinechar=‘\^^M

We need to get the expansion of \M@line into the definition of \M@defns, not
\M@line itself. Therefore \M@line is expanded before \M@defns.
49 \expandafter\toks@\expandafter\expandafter

50 \expandafter{\expandafter\M@defns\M@line}%

51 \xdef\M@defns{\the\toks@}%

52 \test@emptyoreof

53 \if@notemptyoreof

54 \repeat}%

55 \M@defns

56 }

\test@eof The macro \test@eof tests the status of of the input file.
57 \def\test@eof{%

58 \ifeof\M@adrfile

59 \@notreadyfalse

60 \else

61 \@notreadytrue

62 \fi}

\test@emptyoreof The macro \test@emptyoreof checks whether we reached an empty line or the
end of the file.
63 \def\test@emptyoreof{%

64 \@notemptyoreoftrue



mailing package version v1.0b as of 2004/02/20 4

65 \ifx\M@line\@empty

66 \global\@notemptyoreoffalse

67 \fi

68 \ifeof\M@adrfile

69 \global\@notemptyoreoffalse

70 \global\@notreadyfalse

71 \fi}

\skip@empty@lines This macro skips empty lines until it finds either a non-empty line or the end of
the file. If necessary it sets the \if@notready flag. The last line read is left in
\M@line.
72 \def\skip@empty@lines{%

73 {\loop

74 \endlinechar=-1

75 \ifeof\M@adrfile

76 \global\@notreadyfalse

77 \@tempswafalse

78 \else

79 \global\@notreadytrue

80 \global\read\M@adrfile to\M@line

81 \ifx\M@line\@empty

82 \@tempswatrue

83 \else

84 \@tempswafalse

85 \fi

86 \fi

87 \if@tempswa

88 \repeat}%

89 }


